Hadoop存储数据时需要着重考虑的一个因素就是压缩.这里不仅要满足节省存储空间的需求,也要提升数据处理性能.在处理大量数据时,消耗最大的是磁盘和网络的I/O,所以减少需要读取或者写入磁盘的数据量就能大大缩短整体处理时间.这包括数据源的压缩,它也包括数据处理过程(如MapReduce任务)中产生的中间数据的压缩.尽管压缩会增加CPU负载,但是大多数情况下,I/O上的节省仍然大于增加的CPU负载 压缩能够极大地优化处理性能,但是Hadoop支持的压缩格式并不都是可以分片的.MapReduce框架先