首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
keras处理时间序列二分类问题
2024-09-06
keras框架下的深度学习(二)二分类和多分类问题
本文第一部分是对数据处理中one-hot编码的讲解,第二部分是对二分类模型的代码讲解,其模型的建立以及训练过程与上篇文章一样:在最后我们将训练好的模型保存下来,再用自己的数据放入保存下来的模型中进行分类(在后面的文章中会详细讨论如何使用自己的数据去训练模型,或者让保存下来的模型去处理自己的数据).第三部分是多分类模型,多分类的过程和二分类很相似,只是在代码中有些地方需要做出调整. 第二部分是本文的重点. 一:one-hot编码 通过第一篇文章我们知道,对于使用keras来进行深度学习网络的搭建,
keras实现简单性别识别(二分类问题)
keras实现简单性别识别(二分类问题) 第一步:准备好需要的库 tensorflow 1.4.0 h5py 2.7.0 hdf5 1.8.15.1 Keras 2.0.8 opencv-python 3.3.0 numpy 1.13.3+mkl 所需要的人脸检测模块 mtcnn和opencv https://pan.baidu.com/s/1rhP7mcnAtiojhk8eiLroEw 第二步:准备数据集: 将性别不同的图片按照不同的分类放到不同的文件夹内. 数据集 h
1.keras实现-->自己训练卷积模型实现猫狗二分类(CNN)
原数据集:包含 25000张猫狗图像,两个类别各有12500 新数据集:猫.狗 (照片大小不一样) 训练集:各1000个样本 验证集:各500个样本 测试集:各500个样本 1= 狗,0= 猫 # 将图像复制到训练.验证和测试的目录 import os,shutil orginal_dataset_dir = 'kaggle_original_data/train' base_dir = 'cats_and_dogs_small' os.mkdir(base_dir)#保存新数据集的目录 tra
基于Keras的imdb数据集电影评论情感二分类
IMDB数据集下载速度慢,可以在我的repo库中找到下载,下载后放到~/.keras/datasets/目录下,即可正常运行.)中找到下载,下载后放到~/.keras/datasets/目录下,即可正常运行. 电影评论分类:二分类 二分类可能是机器学习最常解决的问题.我们将基于评论的内容将电影评论分类:正类和父类. IMDB数据集 IMDB数据集有5万条来自网络电影数据库的评论:其中2万5千条用来训练,2万5千条用来测试,每个部分正负评论各占50%. 划分训练集.测试集的必要性:不能在相同的数据
xgb, lgb, Keras, LR(二分类、多分类代码)
preprocess # 通用的预处理框架 import pandas as pd import numpy as np import scipy as sp # 文件读取 def read_csv_file(f, logging=False): print("==========读取数据=========") data = pd.read_csv(f) if logging: print(data.head(5)) print(f, "包含以下列") print(
【Python与机器学习】:利用Keras进行多类分类
多类分类问题本质上可以分解为多个二分类问题,而解决二分类问题的方法有很多.这里我们利用Keras机器学习框架中的ANN(artificial neural network)来解决多分类问题.这里我们采用的例子是著名的UCI Machine Learning Repository中的鸢尾花数据集(iris flower dataset). 1. 编码输出便签 多类分类问题与二类分类问题类似,需要将类别变量(categorical function)的输出标签转化为数值变量.这个问题在二分类的时候直
tensorflow实现二分类
读万卷书,不如行万里路.之前看了不少机器学习方面的书籍,但是实战很少.这次因为项目接触到tensorflow,用一个最简单的深层神经网络实现分类和回归任务. 首先说分类任务,分类任务的两个思路: 如果是多分类,输出层为计算出的预测值Z3(1,classes),可以利用softmax交叉熵损失函数,将Z3中的值转化为概率值,概率值最大的即为预测值. 在tensorflow中,多分类的损失函数为: cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_w
Python深度学习案例1--电影评论分类(二分类问题)
我觉得把课本上的案例先自己抄一遍,然后将书看一遍.最后再写一篇博客记录自己所学过程的感悟.虽然与课本有很多相似之处.但自己写一遍感悟会更深 电影评论分类(二分类问题) 本节使用的是IMDB数据集,使用Jupyter作为编译器.这是我刚开始使用Jupyter,不得不说它的自动补全真的不咋地(以前一直用pyCharm)但是看在能够分块运行代码的份上,忍了.用pyCharm敲代码确实很爽,但是调试不好调试(可能我没怎么用心学),而且如果你完全不懂代码含义的话,就算你运行成功也不知道其中的含义,代码有点
keras系列︱人脸表情分类与识别:opencv人脸检测+Keras情绪分类(四)
引自:http://blog.csdn.net/sinat_26917383/article/details/72885715 人脸识别热门,表情识别更加.但是表情识别很难,因为人脸的微表情很多,本节介绍一种比较粗线条的表情分类与识别的办法. Keras系列: 1.keras系列︱Sequential与Model模型.keras基本结构功能(一) 2.keras系列︱Application中五款已训练模型.VGG16框架(Sequential式.Model式)解读(二) 3.keras系列︱图像
keras系列︱图像多分类训练与利用bottleneck features进行微调(三)
引自:http://blog.csdn.net/sinat_26917383/article/details/72861152 中文文档:http://keras-cn.readthedocs.io/en/latest/ 官方文档:https://keras.io/ 文档主要是以keras2.0. 训练.训练主要就”练“嘛,所以堆几个案例就知道怎么做了. . . Keras系列: 1.keras系列︱Sequential与Model模型.keras基本结构功能(一) 2.keras系列︱Ap
[深度应用]·Keras实现Self-Attention文本分类(机器如何读懂人心)
[深度应用]·Keras实现Self-Attention文本分类(机器如何读懂人心) 配合阅读: [深度概念]·Attention机制概念学习笔记 [TensorFlow深度学习深入]实战三·分别使用DNN,CNN与RNN(LSTM)做文本情感分析 笔者在[深度概念]·Attention机制概念学习笔记博文中,讲解了Attention机制的概念与技术细节,本篇内容配合讲解,使用Keras实现Self-Attention文本分类,来让大家更加深入理解Attention机制. 作为对比,可以访问[T
Python深度学习读书笔记-6.二分类问题
电影评论分类:二分类问题 加载 IMDB 数据集 from keras.datasets import imdb (train_data, train_labels), (test_data, test_labels) = imdb.load_data(num_words=10000) 将整数序列编码为二进制矩阵(One-hot编码) import numpy as np def vectorize_sequences(sequences, dimension=10000): resul
NLP(二十)利用BERT实现文本二分类
在我们进行事件抽取的时候,我们需要触发词来确定是否属于某个特定的事件类型,比如我们以政治上的出访类事件为例,这类事件往往会出现"访问"这个词语,但是仅仅通过"访问"这个触发词来判断是否属于出访类事件是不可靠的,比如我们会碰到以下情况: 通过上面的例子,我们知道,像访问速度,访问量这种文档虽然出现了访问,但却不属于政治上的出访类事件.因此,这时候我们需要借助文本分类模型来判断,显然,这是一个二分类模型. 本文将会讲述如何利用BERT+DNN模型来判断文档是否属
电影评论分类:二分类问题(IMDB数据集)
IMDB数据集是Keras内部集成的,初次导入需要下载一下,之后就可以直接用了. IMDB数据集包含来自互联网的50000条严重两极分化的评论,该数据被分为用于训练的25000条评论和用于测试的25000条评论,训练集和测试集都包含50%的正面评价和50%的负面评价.该数据集已经经过预处理:评论(单词序列)已经被转换为整数序列,其中每个整数代表字典中的某个单词.加载数据集 from keras.datasets import imdb (train_data, train_labels), (t
NLP(二十二)利用ALBERT实现文本二分类
在文章NLP(二十)利用BERT实现文本二分类中,笔者介绍了如何使用BERT来实现文本二分类功能,以判别是否属于出访类事件为例子.但是呢,利用BERT在做模型预测的时候存在预测时间较长的问题.因此,我们考虑用新出来的预训练模型来加快模型预测速度. 本文将介绍如何利用ALBERT来实现文本二分类. 关于ALBERT ALBERT的提出时间大约是在2019年10月,其第一作者为谷歌科学家蓝振忠博士.ALBERT的论文地址为:https://openreview.net/pdf?id=H1
二分类问题 - 【老鱼学tensorflow2】
什么是二分类问题? 二分类问题就是最终的结果只有好或坏这样的一个输出. 比如,这是好的,那是坏的.这个就是二分类的问题. 我们以一个电影评论作为例子来进行.我们对某部电影评论的文字内容为好评和差评. 我们使用IMDB 数据集,它包含来自互联网电影数据库(IMDB)的 50 000 条严重两极分化的评论.数据集被分为用于训练的 25 000 条评论与用于测试的 25 000 条评论,训练集和测试集都包含 50% 的正面评论和 50% 的负面评论. 加载数据集 import tensorflow.k
二分类问题续 - 【老鱼学tensorflow2】
前面我们针对电影评论编写了二分类问题的解决方案. 这里对前面的这个方案进行一些改进. 分批训练 model.fit(x_train, y_train, epochs=20, batch_size=512) 这里在训练时增加了一个参数batch_size,使用 512 个样本组成的小批量,将模型训练 20 个轮次. 这个参数可以看成是在训练时不一次性在全部的训练集上进行,而是针对其中的512个题目分批次进行训练.有点类似做512道题目进行训练,然后看结果进行调整,而不是一次性做好25000道题目然
【原】Spark之机器学习(Python版)(二)——分类
写这个系列是因为最近公司在搞技术分享,学习Spark,我的任务是讲PySpark的应用,因为我主要用Python,结合Spark,就讲PySpark了.然而我在学习的过程中发现,PySpark很鸡肋(至少现在我觉得我不会拿PySpark做开发).为什么呢?原因如下: 1.PySpark支持的算法太少了.我们看一下PySpark支持的算法:(参考官方文档) 前面两个pyspark.sql和pyspark.streaming是对sql和streaming的支持.主要是读取数据,和streaming处
Kaggle实战之二分类问题
0. 前言 1. MNIST 数据集 2. 二分类器 3. 效果评测 4. 多分类器与误差分析 5. Kaggle 实战 0. 前言 "尽管新技术新算法层出不穷,但是掌握好基础算法就能解决手头 90% 的机器学习问题." 本系列参考书 "Hands-on machine learning with scikit-learn and tensorflow"以及kaggle相关资料 1. MNIST 数据集 MNIST是最常用的用来实验分类模型的数据集,有7w多张手写0
准确率(Accuracy), 精确率(Precision), 召回率(Recall)和F1-Measure(对于二分类问题)
首先我们可以计算准确率(accuracy),其定义是: 对于给定的测试数据集,分类器正确分类的样本数与总样本数之比.也就是损失函数是0-1损失时测试数据集上的准确率. 下面在介绍时使用一下例子: 一个班级有20个女生,80个男生.现在一个分类器需要从100人挑选出所有的女生.该分类器从中选出了50人,其中20个女生,30个男生. 准确率是指分类器正确分类的比例.正确分类是指正确的识别了一个样本是正例还是负例.例如分类器正确识别了20个女生和50个男生,正确识别的样本数是70个,因此该分类器的准确
热门专题
java任务调度设置
mysql较对规则设置
请求不到菜鸟教程中的数据
ubuntu 拨号获取ipv6
for循环中的case语句
docker推送镜像到私有仓库
bitbucket 如何提交到自己的fork上
mysql navicat执行存储过程
ucharts onready 数据无法加载
SQL视图可以建立索引吗
tar解压命令指定到某个文件夹
.net大数据、处理
layer.open content属性
jmeter从response header获取返回结果
postman调用SAP ODATA接口
elasticsearch 搜索单个字母
Unity 64位Unity加载32位的dll
mongodb 地图距离
kafka的安装与配置实验的总结
微信小程序之间 跳转无感知