接上回, 这次做了一个多元回归 这里贴一下代码 import numpy as np np.random.seed(1337) from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import keras from keras.models import Sequential from keras.layers import Activation from keras.layer
#基于IMDB数据集的简单文本分类任务 #一层embedding层+一层lstm层+一层全连接层 #基于Keras 2.1.1 Tensorflow 1.4.0 代码: '''Trains an LSTM model on the IMDB sentiment classification task. The dataset is actually too small for LSTM to be of any advantage compared to simpler, much faster
LSTM NEURAL NETWORK FOR TIME SERIES PREDICTION Wed 21st Dec 2016 Neural Networks these days are the "go to" thing when talking about new fads in machine learning. As such, there's a plethora of courses and tutorials out there on the basic vani
LSTM Neural Network for Time Series Prediction Wed 21st Dec 2016 Neural Networks these days are the “go to” thing when talking about new fads in machine learning. As such, there’s a plethora of courses and tutorials out there on the basic vanilla neu
TensorFlow Lite 是 TensorFlow 在移动和 IoT 等边缘设备端的解决方案,提供了 Java.Python 和 C++ API 库,可以运行在 Android.iOS 和 Raspberry Pi 等设备上.目前 TFLite 只提供了推理功能,在服务器端进行训练后,经过如下简单处理即可部署到边缘设备上. 个人使用总结: 如果我们只使用Tensorflow的高级API搭建模型,那么将TF转TF Lite再转TF lite micro的过程会相对顺利.但是如果我们的模型使用