~>>_<<~ 咳咳!!!今天写此笔记,以防他日老年痴呆后不会解方程了!!! Begin ! ~1~, 首先呢,就看到了一个 gcd(a,b),这是什么鬼玩意呢?什么鬼玩意并不重要,重要的她代表的含义,其实呢,gcd(a,b)就表示 非负整数 a 和 b(不同时为0) 的最大公约数,(数论概论上说:计算 a 与 b 的最大公因数的更低效方法是我女儿四年级老师教的方法,老师要求学生求出 a 与 b 的所有因数,然后找出同时出现在两个表中的最大数字. YES!A good idea f
该包是高性能的线性代数计算库,两个包一般是相互依赖,因此选择同时介绍其安装: 官方发布如今是lacpack-3.5.0.tgz,获取方法是网址.但打不开,ubuntu一般用 wget http://www.netlib.org/lapack/lapack-3.5.0.tgz 下载后解压 tar -zxvf lapack-.tgz在make之前,需要先创建一个make.inc文件,可以直接根据make.inc.example创建: cd lapack- cp make.inc.example ma
Description The modular modular multiplicative inverse of an integer a modulo m is an integer x such that a-1≡x (mod m). This is equivalent toax≡1 (mod m). Input There are multiple test cases. The first line of input is an integer T ≍ 2000 indicating
C Looooops DescriptionA Compiler Mystery: We are given a C-language style for loop of type for (variable = A; variable != B; variable += C) statement;I.e., a loop which starts by setting variable to value A and while variable is not equal to B, repea
题目链接:http://poj.org/problem?id=2115 C Looooops Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 22912 Accepted: 6293 Description A Compiler Mystery: We are given a C-language style for loop of type for (variable = A; variable != B; vari