首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
latex 证明of定理
2024-10-05
latex中使用定理、证明、缩进
1.定理和证明 \documentclass[a4paper,UTF8]{article} \usepackage{ctex} \usepackage{amsthm,amsmath,amsfonts,amssymb} \newtheorem{theorem}{定理}%一定不能忘,否则会报错 \begin{document} \begin{theorem} 设$a,b$是两个实数,则$2ab\leq a^+b^$. \end{theorem} \begin{proof} 因为$(a-b)^{}\g
[数分笔记]用Dedekind切割定理证明确界定理
1.定理内容 Dedekind切割定理:设是实数集的一个切割,则或者有最大数,或者有最小数. 确界定理:非空有上界的数集必有上确界,非空有下界的数集必有下确界. 2.证明过程 设非空数集有上界 记,即是上界的集合 令的补集为,即 从而形成实数集的一个切割 由Dedekind定理知,要么有最大数,要么有最小数 若有最大数,设是的最大数 由于,所以不是的上界 从而,s.t 那么,从而也不是的上界,故 与是的最大数矛盾,从而没有最大数 所以有最小数 即有最小上界,即上确界 #
Hammersley-Clifford定理证明
Proof of Hammersley-Clifford TheoremProof of Hammersley-Clifford Theorem依赖知识定义1定义2证明过程反向证明(吉布斯分布=>MRF)正向证明(MRF=>吉布斯分布)证明第一点证明第二点疑问点 最近看语义分割论文DeepLab,有使用全连接CRF恢复局部的细节信息,提升分割精度.又回去复习了下CRF,仍然有一个问题很困扰: “根据Hammersley Clifford定理,一个无向图模型的概率可以表示为定义在图上所有最大团
Clairaut 定理 证明
(Clairaut 定理)设 $E$ 是 $\mathbf{R}^n$ 的开子集合,并设 $f:\mathbf{E}\to \mathbf{R}^{m}$ 是 $E$ 上的二次连续可微函数.那么对于一切$x_0\in E$ 和 $1\leq i,j\leq n$, \begin{align*} \frac{\partial }{\partial x_j}\frac{\partial f}{\partial x_i}(x_0)= \frac{\partial }{\partial
【luogu P3807】【模板】卢卡斯定理/Lucas 定理(含 Lucas 定理证明)
[模板]卢卡斯定理/Lucas 定理 题目链接:luogu P3807 题目大意 求 C(n,n+m)%p 的值. p 保证是质数. 思路 Lucas 定理内容 对于非负整数 \(n\),\(m\),质数 \(p\),有: \(C_m^n\equiv \prod\limits_{i=0}^kC_{m_i}^{n^i}(\bmod\ p)\) 其中 \(m=m_kp^k+...+m_1p+m_0\),\(n=n_kp^k+...+n_1p+n_0\).(其实就是 \(n,m\) 的 \(p\) 进
如何用 LaTeX 撰写博士学位论文?
如何用 LaTeX 撰写博士学位论文? 序 一直觉得有必要写这样一篇文章,因为学位论文从格式上说更像一本书,与文章 的排版不同,不仅多出目录等文章没有的部分,而且一般要设置页眉页脚方便阅 读查找.学校有时会提出具体的格式要求,虽然复旦的要求非常简单,而且事实 上并不严格执行,但自己的论文毕竟是自己的孩子,还是要敝帚自珍的,大家都 希望做得漂亮一点. 网上已经有不少学位论文的模板,其中大都出自一两个最初的版本,针对各自学 校的要求作了一些改动.这些模板还是很方便的,如果对它们的排版效果感到完 全满
用latex写毕业论文
用 LaTeX 写漂亮学位论文(from wloo) 序 一直觉得有必要写这样一篇文章,因为学位论文从格式上说更像一本书,与文章 的排版不同,不仅多出目录等文章没有的部分,而且一般要设置页眉页脚方便阅 读查找.学校有时会提出具体的格式要求,虽然复旦的要求非常简单,而且事实 上并不严格执行,但自己的论文毕竟是自己的孩子,还是要敝帚自珍的,大家都 希望做得漂亮一点. 网上已经有不少学位论文的模板,其中大都出自一两个最初的版本,针对各自学 校的要求作了一些改动.这些模板还是很方便的,如果对它们的排版效
【转】Polya定理
转自:http://endlesscount.blog.163.com/blog/static/82119787201221324524202/ Polya定理 首先记Sn为有前n个正整数组成的集合,G为Sn的置换群,C为Sn的着色集.那么我们等于是要求C中有多少种着色方案是不等价的.定义两种着色等价的概念:如果对于在C中的两种着色c1.c2,存在置换f使得f*c1=c2,那么c1和c2就是等价的.要想求不等价着色的个数,我们要先证明一个定理,即: Burnside定理:设G(c
Lucas定理学习小记
(1)Lucas定理:p为素数,则有: (2)证明: n=(ak...a2,a1,a0)p = (ak...a2,a1)p*p + a0 = [n/p]*p+a0,m=[m/p]*p+b0其次,我们知道,对任意质数p有(1+x)^p=1+(x^p)(mod p) .我们只要证明这个式子:C(n,m)=C([n/p],[m/p]) * C(a0,b0)(mod p),那么就可以用归纳法证明整个定理.对于模p而言,我们有下面的式子成立: 上式左右两边的x的某项x^m(m<=n)的系数对模p同余.其
最大流算法(Edmons-Karp + Dinic 比较) + Ford-Fulkson 简要证明
Ford-Fulkson用EK实现:483ms #include <cstdio> #include <cstring> #define min(x,y) (x>y?y:x) ],q[]; ][]; int n,nc,np,m,s,t,all; int MaxFlow(int s, int t){ ; ){ memset(pre,,sizeof(pre)); ,tail=; q[++tail]=s; ){ int cur=q[++head]; ; i<=n; i++)
HDU4704+费马小定理
费马小定理题意:求s1+s2+s3+...+sn;si表示n划分i个数的n的划分的个数,如n=4,则s1=1,s2=3 利用隔板定理可知,就是求(2^n-1)%mod-----Y 现在已知 (2^mod-1)%mod = 1,所以 Y = 2^( (n%(mod-1) -1 +mod)%mod )%mod 证明( 定理:a^(p-1)==1%p,gcd(a,p)==1 ): (http://www.cnitblog.com/luckydmz/archive/2008/06/0
我对Burnside定理的理解
我想了想,发现可以证明burnside定理. 置换:n个元素1,2,-,n之间的一个置换表示1被1到n中的某个数a1取代,2被1到n中的某个数a2取代,直到n被1到n中的某个数an取代,且a1,a2,-,an互不相同. 置换群:置换群的元素是置换,运算是置换的连接.例如: 可以验证置换群满足群的四个条件. 重点是这个:│Ek│·│Zk│=│G│ k=1-n 这个我不会证明,但是很好理解:每个不动点都可以找到一个对应的置换,差不多就这个意思. 该公式的一个很重要的研究对象是群的元素个数,有很
[PeterDLax著泛函分析习题参考解答]第3章 Hahn-Banach 定理
1. 证明 $(10'$). 证明: $\ra$: 由 $p_K(x)<1$ 知 $$\bex \exists\ 0<a<1,\st \cfrac{x}{a}\in K. \eex$$ 既然 $0$ 是 $K$ 的内点, $$\bex \forall\ y,\ \exists\ \ve=\ve(y)>0,\st |t|<\cfrac{\ve}{1-a}\ra ty\in K. \eex$$ 于是由 $K$ 的凸性, $$\bex |t|<\ve\ra x+ty =a\c
Lucas定理学习(进阶中)
(1)Lucas定理:p为素数,则有: (2)证明: n=(ak...a2,a1,a0)p = (ak...a2,a1)p*p + a0 = [n/p]*p+a0,m=[m/p]*p+b0其次,我们知道,对任意质数p有(1+x)^p=1+(x^p)(mod p) .我们只要证明这个式子:C(n,m)=C([n/p],[m/p]) * C(a0,b0)(mod p),那么就可以用归纳法证明整个定理.对于模p而言,我们有下面的式子成立: 上式左右两边的x的某项x^m(m<=n)的系数对模p同余.其
扩展Lucas定理
(1)Lucas定理:p为素数,则有: (2)证明: n=(ak...a2,a1,a0)p = (ak...a2,a1)p*p + a0 = [n/p]*p+a0,m=[m/p]*p+b0其次,我们知道,对任意质数p有(1+x)^p=1+(x^p)(mod p) .我们只要证明这个式子:C(n,m)=C([n/p],[m/p]) * C(a0,b0)(mod p),那么就可以用归纳法证明整个定理.对于模p而言,我们有下面的式子成立: 上式左右两边的x的某项x^m(m<=n)的系数对模p同余.其
【BZOJ 1272】 1272: [BeiJingWc2008]Gate Of Babylon (容斥原理+卢卡斯定理)
1272: [BeiJingWc2008]Gate Of Babylon Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 254 Solved: 120 Description Input Output Sample Input Sample Output 12 HINT Source [分析] T很小,跟以前的某一题很像啊,就是容斥. 枚举不符合的(超过限制的),2^t,然后就是算 n种无限多的东东中选m个. 经典的组合数题,$C_{n+m-1
数论的欧拉定理证明 & 欧拉函数公式(转载)
欧拉函数 :欧拉函数是数论中很重要的一个函数,欧拉函数是指:对于一个正整数 n ,小于 n 且和 n 互质的正整数(包括 1)的个数,记作 φ(n) . 完全余数集合:定义小于 n 且和 n 互质的数构成的集合为 Zn ,称呼这个集合为 n 的完全余数集合. 显然 |Zn| =φ(n) . 有关性质:对于素数 p ,φ(p) = p -1 .对于两个不同素数 p, q ,它们的乘积 n = p * q 满足 φ(n) = (p -1) * (q -1) .这是因为 Zn = {1, 2, 3,
spoj p104 Matrix-Tree定理
这个问题就是经典的生成树记数问题,题目为spoj p104 highway. 首先我们引入Matrix-Tree定理,由kirchhoff证明,定理的概述为,对于图G,我们定义若干个矩阵, D[G],Dij=(i!=j)?0:vi;这里vi为节点i的度数. A[G],Aij=存在边(u,v),即A为图G的连通01矩阵. 定义Kirchhoff Matrix C[G]=D[G]-A[G],那么C[G]的任意一个n-1阶主子式的行列式的绝对值为图G生成树个数. 这样这个问题就可以比较容易的解决了,行
[HDU3037]Saving Beans,插板法+lucas定理
[基本解题思路] 将n个相同的元素排成一行,n个元素之间出现了(n-1)个空档,现在我们用(m-1)个“档板”插入(n-1)个空档中,就把n个元素隔成有序的m份,每个组依次按组序号分到对应位置的几个元素(可能是1个.2个.3个.4个.….),这样不同的插入办法就对应着n个相同的元素分到m组的一种分法,这种借助于这样的虚拟“档板”分配元素的方法称之为插板法. [基本题型的变形(一)] 题型:有n个相同的元素,要求分到m组中,问有多少种不同的分法? 解题思路:这种问题是允许有些组中分到的元素为“0”
Lucas定理和扩展Lucas定理
1.Lucas定理 首先给出式子:\(C_n^m\%p = C_{\lfloor\frac{n}{p}\rfloor}^{\lfloor\frac{m}{p}\rfloor} * C_{n\%p}^{m\%p}\% p\),其中p为质数. 这里给出证明--证明是我在luogu上看到的lance1ot大佬的证明,个人认为是写的很好的,在此还要做一下补充. 首先,对于质数p,可以保证\(C_p^i(1 <= i <= p-1) \equiv 0(mod\ p)\),这个比较显然,因为组合数一定是整
热门专题
DeepFaceLab在应用时怎么一件选择全部应用3
dpi和dfi的区别
Eclipse中常用的自定义快捷代码模板
android 取指定控件
input 里没有叉叉
jedisSentinelPool如何通过配置文件配置
openstack查服务器cpu信息
python怎么安装nmap
nginx 设置 ftp下载
php取一个数的全部因子
windows nginx 开机自启
response code200 断言
oracle查看dg状态
vue3 parallel怎么配置
qt5.8.0安装包
node repl 交互式环境
Python基础教程 第3版 pdf 51jb
百度地图拾取坐标批量转换
tk bind方法传参
react 函数式tab切换组件