Training LeNet on MNIST with Caffe We will assume that you have Caffe successfully compiled. If not, please refer to the Installation page. In this tutorial, we will assume that your Caffe installation is located at CAFFE_ROOT. Prepare Datasets You w
记得第一次接触手写数字识别数据集还在学习TensorFlow,各种sess.run(),头都绕晕了.自从接触pytorch以来,一直想写点什么.曾经在2017年5月,Andrej Karpathy发表的一篇Twitter,调侃道:l've been using PyTorch a few months now, l've never felt better, l've more energy.My skin is clearer. My eye sight has improved.确实,使用p
CNN很多概述和要点在CS231n.Neural Networks and Deep Learning中有详细阐述,这里补充Deep Learning Tutorial中的内容.本节前提是前两节的内容,因为要用到全连接层.logistic regression层等.关于Theano:掌握共享变量,下采样,conv2d,dimshuffle的应用等. 1.卷积操作 在Theano中,ConvOp是提供卷积操作的主力.ConvOp来自theano.tensor.signal.conv.conv2d,
我们先介绍下pytorch中的cnn网络 学过深度卷积网络的应该都非常熟悉这张demo图(LeNet): 先不管怎么训练,我们必须先构建出一个CNN网络,很快我们写了一段关于这个LeNet的代码,并进行注释: # coding=utf-8 import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable class Net(nn.Module): # 定义N