在概率图模型中,有一类很重要的模型称为条件随机场.这种模型广泛的应用于标签—样本(特征)对应问题.与MRF不同,CRF计算的是“条件概率”.故其表达式与MRF在分母上是不一样的. 如图所示,CRF只对 label 进行求和,而不对dataset求和. 1.CRF的likelyhood function 对于给定的数据集以及其对应标记,CRF的 E based on theta 是与 数据集 x[m]有关的,因为x[m]并没有完全被边际掉.也就是说,对数据集中的每个数据x[m],E based o
1.The Language Modeling Problem 现在抛开我们之前讲的马尔科夫模型的假设,对于一门语言的定义,肯定不能简单依赖于每个单词的前两个单词,这是常识.比如英语中的动词形态就和主语有关.那么我会怎么考虑一个语言模型呢,很可能是下面这样一个情况: 我们之前讲的Trigram模型也可以用这样的形式来表示: 那么我们要用我们增加的一些定义,一种naive的方法就是选取一些参数来生成
作者:Scofield链接:https://www.zhihu.com/question/35866596/answer/236886066来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. so far till now, 我还没见到过将CRF讲的个明明白白的.一个都没.就不能不抄来抄去吗?我打算搞一个这样的版本,无门槛理解的.——20170927 陆陆续续把调研学习工作完成了,虽然历时有点久,现在put上来.评论里的同学也等不及了时不时催我,所以不敢怠慢啊…… 总