特征组合 人工方式的特征工程,通常有两个问题: 特征爆炸 大量重要的特征组合都隐藏在数据中,无法被专家识别和设计 针对上述两个问题,广度模型和深度模型提供了不同的解决思路. 广度模型包括FM/FFM等大规模低秩(Low-Rank)模型,FM/FFM通过对特征的低秩展开,为每个特征构建隐式向量,并通过隐式向量的点乘结果来建模两个特征的组合关系实现对二阶特征组合的自动学习.作为另外一种模型,Poly-2模型则直接对2阶特征组合建模来学习它们的权重.FM/FFM相比于Poly-2模型,优势为以下两点.