Pytorch中nn.Dropout2d的作用 首先,关于Dropout方法,这篇博文有详细的介绍.简单来说, 我们在前向传播的时候,让某个神经元的激活值以一定的概率p停止工作,这样可以使模型泛化性更强,因为它不会太依赖某些局部的特征 dropout方法有很多类型,图像处理中最常用的是Dropout2d,我从网上找了很多的中文资料,都没有让人满意的介绍,意外发现源代码dropout.py中的介绍还挺好的: Randomly zero out entire channels:A channel i
目录 1. 前言 # 2. Deep Learning with PyTorch: A 60 Minute Blitz 2.1 base operations 2.2 train a classifier 3 规范化pytorch训练MNIST数据集 1. 前言 最近在学习pytorch,先照着官方的"60分钟教程"学习了一下,然后再github上找了两个star比较多的项目,自己写了一下,学习一下别人的写法. # 2. Deep Learning with PyTorch: A
原文地址:https://github.com/Kaixhin/grokking-pytorch PyTorch is a flexible deep learning framework that allows automatic differentiation(自动求导) through dynamic neural networks (i.e., networks that utilise dynamic control flow like if statements and while