如果Pandas只是能把一些数据变成 dataframe 这样优美的格式,那么Pandas绝不会成为叱咤风云的数据分析中心组件.因为在数据分析过程中,描述数据是通过一些列的统计指标实现的,分析结果也需要由具体的分组行为,对各组横向纵向对比. GroupBy 就是这样的一个有力武器.事实上,SQL语言在Pandas出现的几十年前就成为了高级数据分析人员的标准工具,很大一部分原因正是因为它有标准的SELECT xx FROM xx WHERE condition GROUP BY xx HAVING
//2019.07.18pyhton中pandas数据分析学习——第二部分2.1 数据格式转换1.查看与转换表格某一列的数据格式:(1)查看数据类型:某一列的数据格式:df["列属性名称"].dtype(2)数据类型转换:某一列的数据类型转换需要用到数据转换函数:df[列属性名称]=df[列属性名称].astype("新的数据类型")代码举例如下:import numpy as npimport pandas as pddf=pd.read_excel("