首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
pca 特征值分解 例子
2024-08-19
主成分分析(PCA)原理总结
主成分分析(Principal components analysis,以下简称PCA)是最重要的降维方法之一.在数据压缩消除冗余和数据噪音消除等领域都有广泛的应用.一般我们提到降维最容易想到的算法就是PCA,下面我们就对PCA的原理做一个总结. 1. PCA的思想 PCA顾名思义,就是找出数据里最主要的方面,用数据里最主要的方面来代替原始数据.具体的,假如我们的数据集是n维的,共有m个数据$(x^{(1)},x^{(2)},...,x^{(m)})$.我们希望将这m个数据的维度从n维降到n'维
【SVD、特征值分解、PCA关系】
一.SVD 1.含义: 把矩阵分解为缩放矩阵+旋转矩阵+特征向量矩阵. A矩阵的作用是将一个向量从V这组正交基向量的空间旋转到U这组正交基向量的空间,并对每个方向进行了一定的缩放,缩放因子就是各个奇异值,如果V维度比U大,则说明进行了投影. SVD分解表示把旋转.缩放.特征向量分离出来. 二.SVD与奇异值 1.计算上: U的列为AAT的正交特征向量 V的列为ATA的正交特征向量 2.含义上: 都是抽取一个矩阵的主要部分 3.不同点: 特征值分解只有缩放,没有旋转:所有矩阵都可以奇异值
数学基础系列(六)----特征值分解和奇异值分解(SVD)
一.介绍 特征值和奇异值在大部分人的印象中,往往是停留在纯粹的数学计算中.而且线性代数或者矩阵论里面,也很少讲任何跟特征值与奇异值有关的应用背景. 奇异值分解是一个有着很明显的物理意义的一种方法,它可以将一个比较复杂的矩阵用更小更简单的几个子矩阵的相乘来表示,这些小矩阵描述的是矩阵的重要的特性.就像是描述一个人一样,给别人描述说这个人长得浓眉大眼,方脸,络腮胡,而且带个黑框的眼镜,这样寥寥的几个特征,就让别人脑海里面就有一个较为清楚的认识,实际上,人脸上的特征是有着无数种的,之所以能这么描述,是
特征值分解,奇异值分解(SVD)
特征值分解和奇异值分解在机器学习领域都是属于满地可见的方法.两者有着很紧密的关系,我在接下来会谈到,特征值分解和奇异值分解的目的都是一样,就是提取出一个矩阵最重要的特征. 1. 特征值: 如果说一个向量v是方阵A的特征向量,将一定可以表示成下面的形式: 写成矩阵形式: 这时候λ就被称为特征向量v对应的特征值,一个矩阵的一组特征向量是一组正交向量. 2. 特征分解: 特征值分解是将一个矩阵分解成下面的形式: 其中Q是这个矩阵A的特征向量组成的矩阵,正交矩阵是可逆的.Σ = diag(λ1, λ2,
matlab特征值分解和奇异值分解
特征值分解 函数 eig 格式 d = eig(A) %求矩阵A的特征值d,以向量形式存放d. d = eig(A,B) %A.B为方阵,求广义特征值d,以向量形式存放d. [V,D] = eig(A) %计算A的特征值对角阵D和特征向量V,使AV=VD成立. [V,D] = eig(A,'nobalance') %当矩阵A中有与截断误差数量级相差不远的值时,该指令可能更精确.'nobalance'起误差调节作用. [V,D] = eig(A,B)
讲一下numpy的矩阵特征值分解与奇异值分解
1.特征值分解 主要还是调包: from numpy.linalg import eig 特征值分解: A = P*B*PT 当然也可以写成 A = QT*B*Q 其中B为对角元为A的特征值的对角矩阵,P=QT, 首先A得对称正定,然后才能在实数域上分解, >>> A = np.random.randint(-10,10,(4,4)) >>> A array([[ 6, 9, -10, -1], [ 5, 9, 5, -5], [ -8, 7, -4, 4], [
从投影的角度理解pca:向量,投影,基,内积,坐标,维数,分散程度,方差,协方差矩阵,对角化,特征值分解,主成分分析PCA
参考:http://blog.csdn.net/songzitea/article/details/18219237
特征值分解与奇异值分解(SVD)
1.使用QR分解获取特征值和特征向量 将矩阵A进行QR分解,得到正规正交矩阵Q与上三角形矩阵R.由上可知Ak为相似矩阵,当k增加时,Ak收敛到上三角矩阵,特征值为对角项. 2.奇异值分解(SVD) 其中U是m×m阶酉矩阵:Σ是半正定m×n阶对角矩阵:而V*,即V的共轭转置,是n×n阶酉矩阵. 将矩阵A乘它的转置,得到的方阵可用于求特征向量v,进而求出奇异值σ和左奇异向量u. #coding:utf8 import numpy as np np.set_printoptions(precision
特征向量、特征值以及降维方法(PCA、SVD、LDA)
一.特征向量/特征值 Av = λv 如果把矩阵看作是一个运动,运动的方向叫做特征向量,运动的速度叫做特征值.对于上式,v为A矩阵的特征向量,λ为A矩阵的特征值. 假设:v不是A的速度(方向) 结果如上,不能满足上式的. 二.协方差矩阵 方差(Variance)是度量一组数据分散的程度.方差是各个样本与样本均值的差的平方和的均值. 协方差(Covariance)是度量两个变量的变动的同步程度,也就是度量两个变量线性相关性程度.如果两个变量的协方差为0,则统计学上认为二者线性无关.而方差是协方差的
机器学习-特征值,svd分解
求矩阵的秩 设 ,已知r(A)=2,则参数x,y分别是 解:任意三阶子式=0,有二阶子式≠0,但是这些子式比较多,可以使用初等变换,因为初等变换不改变矩阵的秩,可以将矩阵通过初等行(列)变换,化为行阶梯矩阵,有几行不等于0,秩就是几. 行列式的转换 Am×nx=0只有零解 <=> r(A)=n 特别地,A是n×n时,则Am×nx=0只有零解 <=> |A|≠0 Am×nx=0有非零解 <=> r(A)<
PCA本质和SVD
一.一些概念 线性相关:其中一个向量可以由其他向量线性表出. 线性无关:其中一个向量不可以由其他向量线性表出,或者另一种说法是找不到一个X不等于0,能够使得AX=0.如果对于一个矩阵A来说它的列是线性无关的,则AX=0,只有0解,此时矩阵A可逆. 秩:线性无关向量个数. 基: 特征向量:向量X经过矩阵A旋转后,与原来的X共线,.即为特征值,表示向量的伸缩.如果把矩阵看成进行线性变化的矩阵(旋转,拉伸),那么特征向量就是这样一种向量,它经过这种特定的变换后保持方向不变,只是进行长度上的伸缩而已.反
PRML读书会第十二章 Continuous Latent Variables(PCA,Principal Component Analysis,PPCA,核PCA,Autoencoder,非线性流形)
主讲人 戴玮 (新浪微博: @戴玮_CASIA) Wilbur_中博(1954123) 20:00:49 我今天讲PRML的第十二章,连续隐变量.既然有连续隐变量,一定也有离散隐变量,那么离散隐变量是什么?我们可能还记得之前尼采兄讲过的9.2节的高斯混合模型.它有一个K维二值隐变量z,不仅只能取0-1两个值,而且K维中只能有1维为1.其他维必须为0,表示我们观察到的x属于K类中的哪一类.显然,这里的隐变量z就是个离散隐变量.不过我们容易想到,隐变量未必像kmeans或GMM这种聚类算法那样,非此
主元分析PCA理论分析及应用
首先,必须说明的是,这篇文章是完完全全复制百度文库当中的一篇文章.本人之前对PCA比较好奇,在看到这篇文章之后发现其对PCA的描述非常详细,因此迫不及待要跟大家分享一下,希望同样对PCA比较困惑的朋友能够从这篇文章中得到启发.虽然不知道作者是谁,但是还是非常感谢本文的作者.整篇文章从简单的例子引入这个PCA的算法,当中涉及最主要的知识就是矩阵论,因此如果有看不懂的朋友可以先去对矩阵论进行一些学习,这样对PCA的理解会有很大的帮助. 下面的描述格式方面可能有点出入,因此大家也可以直接通过下面的链接
(六)6.6 Neurons Networks PCA
主成分分析(PCA)是一种经典的降维算法,基于基变换,数据原来位于标准坐标基下,将其投影到前k个最大特征值对应的特征向量所组成的基上,使得数据在新基各个维度有最大的方差,且在新基的各个维度上数据是不相关的,PCA有几个关键的点: 1)归一化均值与方差,均值归一化后便于计算,方差归一化后便于对各个维度进行比较 2)新基为正交基,即各个坐标轴是相互独立的(可理解为垂直),只需要取新基上取方差最大的前几个维度即可 3)PCA的前提是只对服从高斯分布的数据特征提取效果较好,这就大大限制了它的应用范围.如
数字图像处理-----主成成分分析PCA
主成分分析PCA 降维的必要性 1.多重共线性--预测变量之间相互关联.多重共线性会导致解空间的不稳定,从而可能导致结果的不连贯. 2.高维空间本身具有稀疏性.一维正态分布有68%的值落于正负标准差之间,而在十维空间上只有0.02%. 3.过多的变量会妨碍查找规律的建立. 4.仅在变量层面上分析可能会忽略变量之间的潜在联系.例如几个预测变量可能落入仅反映数据某一方面特征的一个组内. 降维的目的: 1.减少预测变量的个数 2.确保这些变量是相互独立的 3.提供一个框架来解释结果 降维的方法有:主成
主成份分析PCA
Data Mining 主成分分析PCA 降维的必要性 1.多重共线性--预测变量之间相互关联.多重共线性会导致解空间的不稳定,从而可能导致结果的不连贯. 2.高维空间本身具有稀疏性.一维正态分布有68%的值落于正负标准差之间,而在十维空间上只有0.02%. 3.过多的变量会妨碍查找规律的建立. 4.仅在变量层面上分析可能会忽略变量之间的潜在联系.例如几个预测变量可能落入仅反映数据某一方面特征的一个组内. 降维的目的: 1.减少预测变量的个数 2.确保这些变量是相互独立的 3.提供一个框架来解释
Kernel PCA 原理和演示
Kernel PCA 原理和演示 主成份(Principal Component Analysis)分析是降维(Dimension Reduction)的重要手段.每一个主成分都是数据在某一个方向上的投影,在不同的方向上这些数据方差Variance的大小由其特征值(eigenvalue)决定.一般我们会选取最大的几个特征值所在的特征向量(eigenvector),这些方向上的信息丰富,一般认为包含了更多我们所感兴趣的信息.当然,这里面有较强的假设:(1)特征根的大小决定了我们感兴趣信息的多少.即
再谈协方差矩阵之主成分分析PCA
上次那篇文章在理论层次介绍了下协方差矩阵,没准很多人觉得这东西用处不大,其实协方差矩阵在好多学科里都有很重要的作用,比如多维的正态分布,再比如今天我们今天的主角——主成分分析(Principal Component Analysis,简称PCA).结合PCA相信能对协方差矩阵有个更深入的认识. PCA的缘起 PCA大概是198x年提出来的吧,简单的说,它是一种通用的降维工具.在我们处理高维数据的时候,为了能降低后续计算的复杂度,在“预处理”阶段通常要先对原始数据进行降维,而PCA就是干这个事的.
SVD分解技术详解
版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gmail.com 前言: 上一次写了关于PCA与LDA的文章,PCA的实现一般有两种,一种是用特征值分解去实现的,一种是用奇异值分解去实现的.在上篇文章中便是基于特征值分解的一种解释.特征值和奇异值在大部分人的印象中,往往是停留在纯粹的数学计算中.而且线性代数或者矩阵论里面,也很少讲任何跟特征值与奇异
主成分分析PCA(转载)
主成分分析PCA 降维的必要性 1.多重共线性--预测变量之间相互关联.多重共线性会导致解空间的不稳定,从而可能导致结果的不连贯. 2.高维空间本身具有稀疏性.一维正态分布有68%的值落于正负标准差之间,而在十维空间上只有0.02%. 3.过多的变量会妨碍查找规律的建立. 4.仅在变量层面上分析可能会忽略变量之间的潜在联系.例如几个预测变量可能落入仅反映数据某一方面特征的一个组内. 降维的目的: 1.减少预测变量的个数 2.确保这些变量是相互独立的 3.提供一个框架来解释结果 降维的方法有:主成
热门专题
kettle引入js
mui input选择时间
金蝶 序时簿开发 GetSel
webpack 端口号被占用
HTTPS的页面 引用了HTTP的资源导致
Configuration 不能注入
windows更改CPU型号
linux 开发板usb高速通信
php 接收到的是一个[object] 如何处理
ios慕课网不能用qq登录
vue实现手机端怎么设置单位
loadrunner11 controller查看日志
一个页面可以使用多个recycleview吗
java根据查询结果生成excel然后下载
let 全局变量 window对象
gridview列取图片
logstash多重映射
phpmyadmin导入.sql文件 1062
ubuntu设置ip的方法
spring eureka 主机有多个ip