背景:基于PyTorch的模型,想固定主分支参数,只训练子分支,结果发现在不同epoch相同的测试数据经过主分支输出的结果不同. 原因:未固定主分支BN层中的running_mean和running_var. 解决方法:将需要固定的BN层状态设置为eval. 问题示例: 环境:torch:1.7.0 # -*- coding:utf-8 -*- import torch import torch.nn as nn import torch.nn.functional as F class Net
In situation of finetuning, parameters in backbone network need to be frozen. To achieve this target, there are two steps. First, locate the layers and change their requires_grad attributes to be False. for param in net.backbone.parameters(): param.r
参考:https://pytorch.org/docs/stable/nn.html Containers Module CLASS torch.nn.Module 所有神经网络模块的基类 你定义的模型必须是该类的子类,即继承与该类 模块也能包含其他模块,允许它们在树状结构中筑巢.您可以将子模块指定为常规属性: import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(se
基础配置 检查 PyTorch 版本 torch.__version__ # PyTorch version torch.version.cuda # Corresponding CUDA version torch.backends.cudnn.version() # Corresponding cuDNN version torch.cuda.get_device_name(0) # GPU type 更新 PyTorch PyTo
Pytorch学习之源码理解:pytorch/examples/mnists from __future__ import print_function import argparse import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import datasets, transforms from torch.optim.
在深度学习中,使用归一化层成为了很多网络的标配.最近,研究了不同的归一化层,如BN,GN和FRN.接下来,介绍一下这三种归一化算法. BN层 BN层是由谷歌提出的,其相关论文为<Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift>,即Inception v2的主要思想.大家也可以看回我以前的博客,关于这个BN层的介绍. BN层的提出,主要解决的一个问题是Inte
Bellovin Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)Total Submission(s): 858 Accepted Submission(s): 395 Problem Description Peter has a sequence a1,a2,...,an and he define a function on the sequence -- F(