首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
r语言 colour=weightlb‘’
2024-09-04
第一篇:R语言数据可视化概述(基于ggplot2)
前言 ggplot2是R语言最为强大的作图软件包,强于其自成一派的数据可视化理念.当熟悉了ggplot2的基本套路后,数据可视化工作将变得非常轻松而有条理. 本文主要对ggplot2的可视化理念及开发套路做一个总体介绍,具体绘图方法(如折线图,柱状图,箱线图等)将在后面的文章中分别进行讲解. 核心理念 1. 将数据,数据相关绘图,数据无关绘图分离 这点可以说是ggplot2最为吸引人的一点.众所周知,数据可视化就是将我们从数据中探索的信息与图形要素对应起来的过程. ggplot2将数据,数据到图
第五篇:R语言数据可视化之散点图
散点图简介 散点图通常是用来表述两个连续变量之间的关系,图中的每个点表示目标数据集中的每个样本. 同时散点图中常常还会拟合一些直线,以用来表示某些模型. 绘制基本散点图 本例选用如下测试数据集: 绘制方法是首先调用ggplot函数选定数据集,并在aes参数中指明横轴纵轴.然后调用散点图函数geom_point()便可绘制出基本散点图.R语言示例代码如下: # 基函数 ggplot(ah, aes(x = ageYear, y = heightIn)) + # 散点图函数 geom_point()
R语言 ggplot2包
R语言 ggplot2包的学习 分析数据要做的第一件事情,就是观察它.对于每个变量,哪些值是最常见的?值域是大是小?是否有异常观测? ggplot2图形之基本语法: ggplot2的核心理念是将绘图与数据分离,数据相关的绘图与数据无关的绘图分离ggplot2是按图层作图ggplot2保有命令式作图的调整函数,使其更具灵活性ggplot2将常见的统计变换融入到了绘图中.ggplot的绘图有以下几个特点:第一,有明确的起始(以ggplot函数开始)与终止(一句语句一幅图):其二,图层之间的叠加
如何在R语言中使用Logistic回归模型
在日常学习或工作中经常会使用线性回归模型对某一事物进行预测,例如预测房价.身高.GDP.学生成绩等,发现这些被预测的变量都属于连续型变量.然而有些情况下,被预测变量可能是二元变量,即成功或失败.流失或不流失.涨或跌等,对于这类问题,线性回归将束手无策.这个时候就需要另一种回归方法进行预测,即Logistic回归. 在实际应用中,Logistic模型主要有三大用途: 1)寻找危险因素,找到某些影响因变量的"坏因素",一般可以通过优势比发现危险因素: 2)用于预测,可以预测某种情况发生的概
数据分析和R语言的那点事儿_1
最近遇到一些程序员同学向我了解R语言,有些更是想转行做数据分析,故开始学习R或者Python之类的语言.在有其他编程语言的背景下,学习R的语法的确是一件十分简单的事.霸特,如果以为仅仅是这样的话那就图样图森破. 首先,数据分析是一个非常庞杂的职能,也许岗位抬头均为数据分析师的两人,做的事情却大不相同——比如使用hadoop做日志统计和使用Excel处理报表,这简直是两个领域,相互之间的职能了解,可能仅为对方工作的冰山一角. 其次,无论任何行业的数据分析,其日常工作主要为以下几块: 数据获取——数
R语言基础:数组&列表&向量&矩阵&因子&数据框
R语言基础:数组和列表 数组(array) 一维数据是向量,二维数据是矩阵,数组是向量和矩阵的直接推广,是由三维或三维以上的数据构成的. 数组函数是array(),语法是:array(dadta, dim),其中data必须是同一类型的数据,dim是各维的长度组成的向量. 1.产生一个三维和四维数组. 例1:xx <- array(1:24, c(3, 4, 2)) #一个三维数组 例2:yy <- array(1:36, c(2, 3, 3, 2)) #一个四维数组 2.dim()函数可
第六篇:R语言数据可视化之数据分布图(直方图、密度曲线、箱线图、等高线、2D密度图)
数据分布图简介 中医上讲看病四诊法为:望闻问切.而数据分析师分析数据的过程也有点相似,我们需要望:看看数据长什么样:闻:仔细分析数据是否合理:问:针对前两步工作搜集到的问题与业务方交流:切:结合业务方反馈的结果和项目需求进行数据分析. "望"的方法可以认为就是制作数据可视化图表的过程,而数据分布图无疑是非常能反映数据特征(用户症状)的.R语言提供了多种图表对数据分布进行描述,本文接下来将逐一讲解. 绘制基本直方图 本例选用如下测试集: 直方图的横轴为绑定变量区间分隔的取值范围,纵轴则表
第四篇:R语言数据可视化之折线图、堆积图、堆积面积图
折线图简介 折线图通常用来对两个连续变量的依存关系进行可视化,其中横轴很多时候是时间轴. 但横轴也不一定是连续型变量,可以是有序的离散型变量. 绘制基本折线图 本例选用如下测试数据集: 绘制方法是首先调用ggplot函数选定数据集,并在aes参数中指明横轴纵轴.然后调用条形图函数geom_line()便可绘制出基本折线图.R语言示例代码如下: # 基函数 ggplot(BOD, aes(x = Time, y = demand)) + # 折线图函数 geom_line() 运行结果:
第三篇:R语言数据可视化之条形图
条形图简介 数据可视化中,最常用的图非条形图莫属,它主要用来展示不同分类(横轴)下某个数值型变量(纵轴)的取值.其中有两点要重点注意: 1. 条形图横轴上的数据是离散而非连续的.比如想展示两商品的价格随时间变化的走势,则不能用条形图,因为时间变量是连续的: 2. 有时条形图的值表示数值本身,但也有时是表示数据集中的频数,不要引起混淆: 绘制基本条形图 本例选用测试数据集如下: 绘制方法是首先调用ggplot函数选定数据集,并在aes参数中指明横轴纵轴.然后调用条形图函数geom_bar(stat
R语言︱机器学习模型评估方案(以随机森林算法为例)
笔者寄语:本文中大多内容来自<数据挖掘之道>,本文为读书笔记.在刚刚接触机器学习的时候,觉得在监督学习之后,做一个混淆矩阵就已经足够,但是完整的机器学习解决方案并不会如此草率.需要完整的评价模型的方式. 常见的应用在监督学习算法中的是计算平均绝对误差(MAE).平均平方差(MSE).标准平均方差(NMSE)和均值等,这些指标计算简单.容易理解:而稍微复杂的情况下,更多地考虑的是一些高大上的指标,信息熵.复杂度和基尼值等等. 本篇可以用于情感挖掘中的监督式算法的模型评估,可以与博客对着看:R语言
R语言-文本挖掘
---恢复内容开始--- 案例1:对主席的新年致辞进行分词,绘制出词云 掌握jieba分词的用法 1.加载包 library(devtools) library(tm) library(jiebaR) library(jiebaRD) library(tmcn) library(NLP)library(wordcloud2) 2.导入数据 news <- readLines('E:\\Udacity\\Data Analysis High\\R\\R_Study\\高级课程代码\\数据集\\第一
R语言数据类型
R语言数据类型[转!!]Zhao-Pace https://www.cnblogs.com/zhao441354231/p/5970544.html R语言用来存储数据的对象包括: 向量, 因子, 数组, 矩阵, 数据框, 时间序列(ts)以及列表, 下面讲意义介绍. 1. 向量(一维数据): 只能存放同一类型的数据 语法: c(data1, data2, ...), 访问的时候下标从1开始(和Matlab相同); 向量里面只能存放相同类型的数据. > x <- c(1,5,8,9,1,
使用R语言的RTCGA包获取TCGA数据--转载
转载生信技能树 https://mp.weixin.qq.com/s/JB_329LCWqo5dY6MLawfEA TCGA数据源 - R包RTCGA的简单介绍 - 首先安装及加载包 - 指定任意基因从任意癌症里面获取芯片表达数据 - 绘制指定基因在不同癌症的表达量区别boxplot - 更多boxplot参数 - 指定任意基因从任意癌症里面获取测序表达数据 - 用全部的rnaseq的表达数据来做主成分分析 - 用5个基因在3个癌症的表达量做主成分分析 - 用突变数据做生存分析 - 多个基因在多
R语言颜色综合运用与色彩方案共享
R语言颜色综合运用与色彩方案共享 小魔方 EasyCharts 2016-11-21 今天这篇主要讲解R语言颜色综合运用,主要跟大家介绍如何提取那些专业色彩包中的颜色搭配用于在基础绘图系统和高级绘图系统中共享. 其实无论是R语言的预设配色系统.自定义颜色表还是哪些专属配色包,我们所使用(或者R语言识别的)的仅仅就是一组字符向量所代表的色值而已,并不神秘. 通过scales中的色彩获取函数,我们可以将专属配色主题(RColorBrewer.ggthemes)中的配色主题提取出来,以函数的形式传递给
R语言和中国地图
上图是R语言绘制的按地域分布的数据图.更科学,更严谨,也更有质感的样子. 今天瞎写点东西,我在想数据分析的意义是什么,也许就是研究事物存在的形式.而事物存在的形式是什么样子呢,从最初的三维空间,爱因斯坦伯伯把时间也拉了进来,于是时间作为一种变化的空间而存在着,成为第四维.现在好像还发现了第五空间,可能是人的心理空间或者意识空间,还有人说是曲率,不一而足.个人认为i,所有的事物应该都是彼此联系的,没有单纯的独立的与其他东西绝缘的存在.而人的内心,人的思维目前确实是独立于其他四维的空间.所以他应该是
R语言网络爬虫学习 基于rvest包
R语言网络爬虫学习 基于rvest包 龙君蛋君:2015年3月26日 1.背景介绍: 前几天看到有人写了一篇用R爬虫的文章,感兴趣,于是自己学习了.好吧,其实我和那篇文章R语言爬虫初尝试-基于RVEST包学习 的主人认识- 2.知识引用与学习: 1.R语言爬虫初尝试-基于RVEST包学习 2.大数据分析之——足彩数据趴取 3.rvest + CSS Selector 网页数据抓取的最佳选择 4.rvest的github 3.正文: 第一个爬虫是爬取了戴申大牛在科学网博客的一些基本信息,戴申大牛看
【数据分析 R语言实战】学习笔记 第四章 数据的图形描述
4.1 R绘图概述 以下两个函数,可以分别展示二维,三维图形的示例: >demo(graphics) >demo(persp) R提供了多种绘图相关的命令,可分成三类: 高级绘图命令:在图形设备上产生一个新的图区,它可能包括坐标轴.标签.标题等. 低级绘图命令:在一个己经存在的图形上加上更多的图形元素,如额外的点.线和标签. 交互式图形命令:允许交互式地用鼠标在一个已经存在的图形.上添加图形信息或者提取图形信息. 使用R语言作图,主要按照以下步骤进行: ①取原始数据,准备好绘图需要的变量. ②
R语言封装函数
R语言封装函数 原帖见豆瓣:https://www.douban.com/note/279077707/ 一个完整的R函数,需要包括函数名称,函数声明,函数参数以及函数体几部分. 1. 函数名称,即要编写的函数名称,这一名称就作为将来调用R函数的依据.2. 函数声明,函数名称 <- function, 即声明该对象的类型为函数.3. 函数参数,这里是输入的数据,函数参数是一个虚拟出来的一个对象.函数参数所等于的数据,就是在函数体内部将要处理的值,或者对应的数据类型. 函数体内部的程序语句进行数据
R语言作为BI中ETL的工具
R语言作为BI中ETL的工具,增删改 R语言提供了强大的R_package与各种数据库进行数据交互. 外加其强大数据变换清洗函数,为ETL提供一条方便快捷的道路. RODBC ROracal RMysql Rmongodb http://mirrors.ustc.edu.cn/CRAN/web/packages/rmongodb/vignettes/rmongodb_cheat_sheet.pdf step1 新建连接con,并查看其信息 library(RODBC) con<-odbcConn
R语言环境安装与基本使用
R语言安装包可以从这个地址选择合适的URL去下载:https://cran.r-project.org/mirrors.html,这里使用这个https://mirrors.tuna.tsinghua.edu.cn/CRAN/,如下: 下载对应平台的安装包即可,这里我下载Mac OS X的,目前版本是3.3.2. 注意: 在下载文件描述可以看到,需要X11环境的支持,不过安装包已经包含这些必须的包在里面了! 安装完后,可以在应用程序看到图标"R": 点击打开后界面如下: 当然,也有图形
热门专题
Springboot项目中jsp访问静态资源404问题
pycharm护眼配色和字体
svn log URL 查看记录
php aop切面、处理日志
supervisor中写多条命令
python登录判断用户名和密码
Binlog Dump 进程可以杀么
iptables查看开放的端口
openlayers 监控地图级别
c#读plc的寄存器
Unity 面片绘制插件
同时播放1000个视频 h5
swift 改变已有颜色
unity 3d 机械设备 拆解 合并
myeclipse 配置maven
io.netty 升级到高版本会出现问题吗
andriod原生,判断文件夹是否
NSMutableAttributedString 顶部间距
ffmpeg旋转视频逆时针90度
灵越14 7447拆机