首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
r语言 import cv2
2024-10-05
python安装OpenCV后import cv2报错解决办法
现在python安装完成后,运行pip install opencv-python安装成功后,import cv2时会失败 看到有人给出下载https://www.lfd.uci.edu/~gohlke/pythonlibs/中的wheel包后再用pip安装,但是我发现还是会失败! 最好的解决办法是,先下载对应python版本的anaconda,然后在anaconda文件的scripts目录下用pip 安装 wheel文件,然后把anaconda的安装路径加入到环境变量中 最后在IDE中将pyt
[2]R语言在数据处理上的禀赋之——可视化技术
本文目录 Java的可视化技术 R的可视化技术 二维做图利器plot的参数配置 *权限机制 *plot独有的参数 *plot的type介绍 *title介绍 *公共参数集合--par *par的权限机制 总结 本文首发 https://program-dog.blogspot.com 注1:本文也曾在csdn发布,不过无法忍受csdn超长时间的审核,迁移到博客圆了. 注2 : 本文含有大量原创图,但本文首发在google的blogspot上,国内图片可能不可见,有时间我会换图床的. 本作品采用知
用R语言对NIPS会议文档进行聚类分析
一.用R语言建立文档矩阵 (这里我选用的是R x64 3.2.2) (这里我取的是04年NIPS共计207篇文档做分析,其中文档内容已将开头的作者名和最后的参考文献进行过滤处理) ##1.Data Import 导入自己下的3084篇NIPStxt文档 library("tm")#加载tm包 stopwords<- unlist(read.table("E:\\AllCode\\R\\stopwords.txt",stringsAsFactors=F)) d
JAVA 调用 R 语言
1 简介 R是统计计算的强大工具,而JAVA是做应用系统的主流语言,两者天然具有整合的需要.关于整合,一方面,R中可以创建JAVA对象调用JAVA方法,另一方面,JAVA中可以转换R的数据类型调用R的函数,互相取长补短.现在也有一个项目JGR,用JAVA做R的图形界面,可以实现高亮显示自动补全等,还能让JAVA和R互相调用. 关于R中调用JAVA,我想主要是为了利用其面向对象的特性,毕竟R语言近来很致力于向面向对象发展,有个很好的项目rJava可以实现,在www.rforge.net/rJava
R语言︱ 数据库SQL-R连接与SQL语句执行(RODBC、sqldf包)
要学的东西太多,无笔记不能学~~ 欢迎关注公众号,一起分享学习笔记,记录每一颗"贝壳"~ --------------------------- 数据库是极其重要的R语言数据导入源数据之地,读入包有sqldf.RODBC等.跟SQL server相连有RODBC,跟mySQL链接的有RMySQL.但是在R里面,回传文本会出现截断的情况,这一情况可把我弄得有点手足无措. 一.数据库读入--RODBC包 CRAN 里面的包 RODBC 提供了 ODBC的访问接口: odbcConnect
R语言︱文本挖掘套餐包之——XML+SnowballC+tm包
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- R语言︱文本挖掘套餐包之--XML+tm+SnowballC包 笔者寄语:文本挖掘.情感分析是目前非结构数据非常好用.有效的分析方式. 先针对文本挖掘这个套餐包做个简单了解.一般来说一个完整的文本挖掘解决流程是: 网页爬取数据--数据格式转化(分隔)--建立语料库--词频去噪--提取词干--创建文档-词频矩阵--后续分析(聚类.词云等) XML
R语言 文本挖掘 tm包 使用
#清除内存空间 rm(list=ls()) #导入tm包 library(tm) library(SnowballC) #查看tm包的文档 #vignette("tm") ##1.Data Import 导入自带的路透社的20篇xml文档 #找到/texts/crude的目录,作为DirSource的输入,读取20篇xml文档 reut21578 <- system.file("texts", "crude", package = &quo
python调用R语言,关联规则可视化
首先当然要配置r语言环境变量什么的 D:\R-3.5.1\bin\x64; D:\R-3.5.1\bin\x64\R.dll;D:\R-3.5.1;D:\ProgramData\Anaconda3\Lib\site-packages\rpy2; 本来用python也可以实现关联规则,虽然没包,但是可视化挺麻烦的 #!/usr/bin/env python3 # -*- coding: utf-8 -*- from pandas import read_csv def loadDataSet():
Python调用R语言
网络上经常看到有人问数据分析是学习Python好还是R语言好,还有一些争论Python好还是R好的文章.每次看到这样的文章我都会想到李舰和肖凯的<数据科学中的R语言>,书中一直强调,工具不分好坏,重要的是解决问题的思路,就算是简单的excel,也能应付数据分析中的大部分问题.再者Python和R本来就没有什么好对比的,一门是计算机工程语言,一门是统计语言,只有将两者结合起来,才能发挥更大的威力,不是吗,对于数据分析的人来说,难道不是两样都要掌握的吗? rpy2是Python调用R程序的模块,旨
机器学习与R语言:C5.0
#---------------------------------------- # 功能描述:演示C50建模过程 # 数据集:汉堡大学信贷模型,信贷数据 # #---------------------------------------- #第一步:收集数据 # import the CSV file credit <- read.csv("/Users/chenyangang/R语言/data/credit.csv", stringsAsFactors = TRUE) #
机器学习与R语言:NB
#---------------------------------------- # 功能描述:演示NB建模过程 # 数据集:SMS文本信息 # tm包:维也纳财经大学提供 #---------------------------------------- #第一步:收集数据 # import the CSV file sms_raw <- read.csv("/Users/chenyangang/R语言/data/sms_spam.csv", stringsAsFactors
机器学习与R语言:kNN
#---------------------------------------- # 功能描述:演示kNN建模过程 # 数据集:威斯康星乳腺癌诊断 # #---------------------------------------- #第一步:收集数据 # import the CSV file wbcd <- read.csv("/Users/chenyangang/R语言/data/wisc_bc_data.csv", stringsAsFactors = FALSE)
萌新学习Python爬取B站弹幕+R语言分词demo说明
代码地址如下:http://www.demodashi.com/demo/11578.html 一.写在前面 之前在简书首页看到了Python爬虫的介绍,于是就想着爬取B站弹幕并绘制词云,因此有了这样一个简单的尝试,从搭建环境到跑通demo,不懂语法,不知含义,装好环境,查到API,跑通Demo,就是目标!纯零基础萌新! 关于环境的安装及调试过程中遇到的问题记录请移步 二.Python爬取B站弹幕 环境说明 windows8.1 x64+python3.6+scrapy1.4 参考文档: scr
R语言基础入门之二:数据导入和描述统计
by 写长城的诗 • October 30, 2011 • Comments Off This post was kindly contributed by 数据科学与R语言 - go there to comment and to read the full post. 一.数据导入 对初学者来讲,面对一片空白的命令行窗口,第一道真正的难关也许就是数据的导入.数据导入有很多途径,例如从网页抓取.公共数据源获得.文本文件导入.为了快速入门,建议初学者采取R语言协同Excel电子表格的方法.也就
用蒙特卡洛方法计算派-python和R语言
用蒙特卡洛方法算pi-基于python和R语言 最近follow了MOOC上一门python课,开始学Python.同时,买来了概率论与数理统计,准备自学一下统计.(因为被鄙视过不是统计专业却想搞数据分析) 有趣的是书里面有一块讲蒲丰投针计算Pi,这是一种随机模拟法,也就是蒙特卡洛法.蒲丰投针之于我太难,暂时没想到怎么用计算机模拟这一过程. python课中,老师也提到用随机模拟法,也就是蒙特卡洛法(MonteCarlo),用计算机模拟几千次实验,计算pi的近似值.好巧. 就拿python课中的
R语言绘制相对性关系图
准备 第一步就是安装R语言环境以及RStudio 图绘制准备 首先安装库文件,敲入指令,回车 install.packages('corrplot') 然后安装excel导入的插件,点击右上角import Dataset,选中From excel即可. 这些操作都很简单~~ 数据预处理 然后到了数据输入了,这么多数据,我们总不能一行输入吧?那得有多蠢 于是我们利用上了数据导入功能,当当当~~ 然而理想很丰满,现实却很蛋疼,导入的excel数据格式不是我们希望的矩阵格式ORZ! 哎,休息下喝杯茶,
R语言读取Excel文档
在R语言数据管理(三):数据读写一博文中,我曾写到有关读取xls.xlsx文件时一般将文档改成csv文件读取,这是一般做法.csv文件也有其缺点,修改较为麻烦,当文件数据较大时尤为明显.而生活中必不可少的会出现xls文件,例如时间序列有关文件,且常常数据量较大.读取xls类文件,我想还是有必要学一下. 一般使用RODBC包来访问Excel文件,现在我们读取mydata.xls文件中第一个工作表中的数据,格式如下: library("RODBC") channel<-odbcCon
R语言最好的IDE——RStudio
转自http://www.dataguru.cn/article-1602-1.html 看到很多的R语言教材,介绍的编辑器或者IDE都是很简陋的那些,就没有见到有人提到RStudio.对于不使用Emacs的人来说,RStudio真的是一个很好很好的IDE. http://www.rstudio.org/ 在这里就可以下载了,还支持多平台,windows,Linux,Mac都能用,非常好.当然,它的好不仅是夸平台,还有许许多多的有点.下面我将详细介绍它. 下面就是它的主界面. 从图上可以看出,它
决策树ID3原理及R语言python代码实现(西瓜书)
决策树ID3原理及R语言python代码实现(西瓜书) 摘要: 决策树是机器学习中一种非常常见的分类与回归方法,可以认为是if-else结构的规则.分类决策树是由节点和有向边组成的树形结构,节点表示特征或者属性, 而边表示的是属性值,边指向的叶节点为对应的分类.在对样本的分类过程中,由顶向下,根据特征或属性值选择分支,递归遍历直到叶节点,将实例分到叶节点对应的类别中. 决策树的学习过程就是构造出一个能正取分类(或者误差最小)训练数据集的且有较好泛化能力的树,核心是如何选择特征或属性作为节点, 通
R语言基础入门
请先安装好R和RStudio 如果不干别的,控制台就是一个内置计算器 2 * 3 #=> 6 sqrt(36) #=> 6, square root log10(100) #=> 2, log base 10 10 / 3 #=> 3.3, 10 by 3 10 %/% 3 #=> 3, quotient of 10 by 3 10 %% 3 #=> 1, remainder of 10 by 3 余数 分配符 a <- 10 # assign 10 to 'a'
机器学习十大算法总览(含Python3.X和R语言代码)
引言 一监督学习 二无监督学习 三强化学习 四通用机器学习算法列表 线性回归Linear Regression 逻辑回归Logistic Regression 决策树Decision Tree 支持向量机SVM Support Vector Machine 朴素贝叶斯Naive Bayes K近邻KNN K- Nearest Neighbors K均值K-Means K-means如何形成群类 随机森林Random Forest 降维算法Dimensionality Reduction Algo
热门专题
table css3样式 表头纵向
python 压测脚本
thinkphp5 taglib自定义标签 判断结果是否为空
两个原理图生成一个pcb
python进程sleep0
Dapper 中使用sql in 关键字查询
vscode拉去git代码
gendisk 结构体
jqgrid 自动设置列宽
ios h5 双击页面放大
git 撤销提交的commit log
pymediainfo用法
firefly 无有效的license
为温度传感器 按键 风机分配stm32mcu引脚
drawboard pdf 死机
datatabes columns 配置 文字靠右
微信小程序搜索功能的制作
python 写入注册表
mac查看class文件
oracle 查询表空间大小及使用情况