一.Table for Content 在之前的文章中我们介绍了Decision Trees Agorithms,然而这个学习算法有一个很大的弊端,就是很容易出现Overfitting,为了解决此问题人们找到了一种方法,就是对Decision Trees 进行 Pruning(剪枝)操作. 为了提高Decision Tree Agorithm的正确率和避免overfitting,人们又尝试了对它进行集成,即使用多棵树决策,然后对于分类问题投票得出最终结果,而对于回归问题则计算平均结果.下面是几条
假设我们有很多机器学习算法(可以是前面学过的任何一个),我们能不能同时使用它们来提高算法的性能?也即:三个臭皮匠赛过诸葛亮. 有这么几种aggregation的方式: 一些性能不太好的机器学习算法(弱算法),如何aggregation,成为表现比较好的算法?来看一下: 我们可以看出,有时候aggregation的表现像是在做feature transform,有时候又像是在做regularization. Blending:uniform Blending. linear Blending. a
Today, I want to show how I use Thomas Lin Pederson's awesome ggraph package to plot decision trees from Random Forest models. I am very much a visual person, so I try to plot as much of my results as possible because it helps me get a better feel fo
There is a plethora of classification algorithms available to people who have a bit of coding experience and a set of data. A common machine learning method is the random forest, which is a good place to start. This is a use case in R of the randomFo