特征抽取sklearn.feature_extraction 模块提供了从原始数据如文本,图像等众抽取能够被机器学习算法直接处理的特征向量. 1.特征抽取方法之 Loading Features from Dicts measurements=[ {'city':'Dubai','temperature':33.}, {'city':'London','temperature':12.}, {'city':'San Fransisco','temperature':18.}, ] from sk
一:sklearn中决策树的参数: 1,criterion: ”gini” or “entropy”(default=”gini”)是计算属性的gini(基尼不纯度)还是entropy(信息增益),来选择最合适的节点. 2,splitter: ”best” or “random”(default=”best”)随机选择属性还是选择不纯度最大的属性,建议用默认. 3,max_features: 选择最适属性时划分的特征不能超过此值. 当为整数时,即最大特征数:当为小数时,训练集特征数*小数: if