实例要求:以sklearn库自带的iris数据集为例,使用sklearn估计器构建K-Means聚类模型,并且完成预测类别功能以及聚类结果可视化. 实例代码: import pandas as pd import matplotlib.pyplot as plt from sklearn.datasets import load_iris from sklearn.preprocessing import MinMaxScaler from sklearn.cluster import KMea
import numpy as np import pandas as pd from keras.models import Sequential from keras.layers import Dense, Dropout from keras.wrappers.scikit_learn import KerasClassifier from keras.utils import np_utils from sklearn.model_selection import train_test
在上一篇博客中介绍了数值型数据的预处理但是真实世界的数据集通常都含有分类型变量(categorical value)的特征.当我们讨论分类型数据时,我们不区分其取值是否有序.比如T恤尺寸是有序的,因为XL>L>M.而T恤颜色是无序的.在讲解处理分类数据的技巧之前,我们先创建一个新的DataFrame对象: import pandas as pd from pandas import DataFrame data = {'color':['green','red','blue'],