进行时间序列的数据分析时,季节因素调整与hp滤波是进行数据处理与准备工作的常见必要环节.本文简要梳理季节调整与hp滤波的应用场景,以及在Python中的实现方法. 1. 季节调整方法 季节调整的目的是剔除季节因素的影响,使得数据平滑.进行季节调整的目的其一是使得不同季节的数据具有可比性,其二是使得一般的时间序列模型能够适用于数据,例如我们观察到近期燃油价格上涨,想通过ARMA模型验证其趋势性,但燃油上涨的时间窗口在冬季,所以要通过季节调整方法剔除掉季节作用,余下的价格上涨才有验证的意义. 常用的