map将函数作用到数据集的每一个元素上,生成一个新的分布式的数据集(RDD)返回 map函数的源码: def map(self, f, preservesPartitioning=False): """ Return a new RDD by applying a function to each element of this RDD. >>> rdd = sc.parallelize(["b", "a", &quo
文中的所有操作都是在之前的文章spark集群的搭建基础上建立的,重复操作已经简写: 之前的配置中使用了master01.slave01.slave02.slave03: 本篇文章还要添加master02和CloudDeskTop两个节点,并配置好运行环境: 一.流程: 1.在搭建高可用集群之前需要先配置高可用,首先在master01上: [hadoop@master01 ~]$ cd /software/spark-2.1.1/conf/ [hadoop@master01 conf]$ vi s
//统计单词top10def main(args: Array[String]): Unit = { val conf = new SparkConf().setAppName("tst").setMaster("local[3]") val sc = new SparkContext(conf) //wc val res = sc.textFile("D:\\test\\spark\\urlCount").flatMap(_.split(&qu
原文地址:https://blog.csdn.net/helloxiaozhe/article/details/80492933 1.创建一个RDD变量,通过help函数,查看相关函数定义和例子: >>> a = sc.parallelize([(1,2),(3,4),(5,6)]) >>> a ParallelCollectionRDD[21] at parallelize at PythonRDD.scala:475 >>> help(a.map)
RDD flatMap 操作例子: flatMap,对原RDD的每个元素(行)执行函数操作,然后把每行都“拍扁” [training@localhost ~]$ hdfs dfs -put cats.txt[training@localhost ~]$ hdfs dfa -cat cats.txtError: Could not find or load main class dfa[training@localhost ~]$ hdfs dfs -cat cats.txtThe cat on