整理自Andrew Ng 的 machine learnig 课程 week1. 目录: 什么是机器学习 监督学习 非监督学习 一元线性回归 模型表示 损失函数 梯度下降算法 1.什么是机器学习 Arthur Samuel不是一个playing checker的高手,但是他编了一个程序,每天和这个程序playing checker,后来这个程序最后变得特别厉害,可以赢很多很厉害的人了.所以Arthur Samuel就给机器学习下了一个比较old,不太正式的定义: " the field of s
视频学习来源 https://www.bilibili.com/video/av40787141?from=search&seid=17003307842787199553 笔记 环境为 anaconda + python3.7 Keras 线性回归 import keras from keras.layers import Dense from keras.models import Sequential import numpy as np import matplotlib.pyplot
原文地址:http://www.cnblogs.com/KID-XiaoYuan/p/7247481.html STEP1 PLOTTING THE DATA 在处理数据之前,我们通常要了解数据,对于这次的数据集合,我们可以通过离散的点来描绘它,在一个2D的平面里把它画出来. ex1data1.txt 我们把ex1data1中的内容读取到X变量和y变量中,用m表示数据长度. 1 2 3 4 data = load('ex1data1.txt'); X = data(:,1); y = data
成本函数(cost function)也叫损失函数(loss function),用来定义模型与观测值的误差.模型预测的价格与训练集数据的差异称为残差(residuals)或训练误差(test errors). 我们可以通过残差之和最小化实现最佳拟合,也就是说模型预测的值与训练集的数据最接近就是最佳拟合.对模型的拟合度进行评估的函数称为残差平方和(residual sum of squares)成本函数.就是让所有训练数据与模型的残差的平方之和最小. 我们用R方(r-squared)评估预测的效