从这里开始换个游戏演示,cartpole游戏 Deep Q Network 实例代码 import sys import gym import pylab import random import numpy as np from collections import deque from keras.layers import Dense from keras.optimizers import Adam from keras.models import Sequential EPISODES
Deep Q Learning 使用gym的CartPole作为环境,使用QDN解决离散动作空间的问题. 一.导入需要的包和定义超参数 import tensorflow as tf import numpy as np import gym import time import random from collections import deque ##################### hyper parameters #################### # Hyper Para
1. 前言 在前面的章节中我们介绍了时序差分算法(TD)和Q-Learning,当状态和动作空间是离散且维数不高时可使用Q-Table储存每个状态动作对的Q值,而当状态和动作空间是高维连续时,使用Q-Table不动作空间和状态太大十分困难.所以论文Human-level control through deep reinforcement learning提出了用Deep Q Network(DQN)来拟合Q-Table,使得Q-Table的更新操作包在一个黑盒里面,使强化学习的过程更加的通用化