首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
storm实现实时对账
2024-10-20
亿级流量场景下,大型架构设计实现【2】---storm篇
承接之前的博:亿级流量场景下,大型缓存架构设计实现 续写本博客: ****************** start: 接下来,我们是要讲解商品详情页缓存架构,缓存预热和解决方案,缓存预热可能导致整个系统崩溃的问题以及解决方案: 缓存--->热: 预热:热数据 解决方案中和架构设计中,会引入大数据的实时计算技术---> storm: 为什么引入这storm,必须是storm吗,我们后面面去讲解那个解决方案的时候再说: 为什么引入storm: 因为一些热点数据相关的一些实时处理方案,比如快速预热,
Storm分布式实时流计算框架相关技术总结
Storm分布式实时流计算框架相关技术总结 Storm作为一个开源的分布式实时流计算框架,其内部实现使用了一些常用的技术,这里是对这些技术及其在Storm中作用的概括介绍.以此为基础,后续再深入了解Storm的内部实现细节. 1. Zookeeper集群 Zookeeper是一个针对大型分布式系统的可靠协调服务系统,其采用类似Unix文件系统树形层次结构的数据模型(如:/zoo/a,/zoo/b),节点内可存储少量数据(<1M,当节点存储大数据量时,实际应用中可能出现同步问题). Zookeep
使用Storm实现实时大数据分析
摘要:随着数据体积的越来越大,实时处理成为了许多机构需要面对的首要挑战.Shruthi Kumar和Siddharth Patankar在Dr.Dobb’s上结合了汽车超速监视,为我们演示了使用Storm进行实时大数据分析.CSDN在此编译.整理. 简单和明了,Storm让大数据分析变得轻松加愉快. 当今世界,公司的日常运营经常会生成TB级别的数据.数据来源囊括了互联网装置可以捕获的任何类型数据,网站.社交媒体.交易型商业数据以及其它商业环境中创建的数据.考虑到数据的生成量,实时处理成为了许多机
使用Storm实现实时大数据分析!
随着数据体积的越来越大,实时处理成为了许多机构需要面对的首要挑战.Shruthi Kumar和Siddharth Patankar在Dr.Dobb's上结合了汽车超速监视,为我们演示了使用Storm进行实时大数据分析.CSDN在此编译.整理. 简单和明了,Storm让大数据分析变得轻松加愉快. 当今世界,公司的日常运营经常会生成TB级别的数据.数据来源囊括了互联网装置可以捕获的任何类型数据,网站.社交媒体.交易型商业数据以及其它商业环境中创建的数据.考虑到数据的生成量,实时处理成为了许多机构需要
基于Redis、Storm的实时数据查询实践
通过算法小组给出的聚合文件,我们需要实现一种业务场景,通过用户的消费地点的商户ID与posId,查询出他所在的商圈,并通过商圈地点查询出与该区域的做活动的商户,并与之进行消息匹配,推送相应活动信息到用户手机. 那么整个流程分为两步,第一步,将整个聚合文件刷入缓存,文件数据格式如下: 29 1:1 102100156910958 10015691 X有限公司 0 1 29 1:1 102100156910958 10015691 X有限公司 0 1 字段含义分别是 地区编号.商圈编号.商户编号.P
用Storm轻松实时大数据分析【翻译】
原文地址 简单易用,Storm让大数据分析变得轻而易举. 如今,公司在日常运作中经常会产生TB(terabytes)级的数据.数据来源包括从网络传感器捕获的,到Web,社交媒体,交易型业务数据,以及其他业务环境中创建的数据.考虑到数据的生成量,实时计算(real-time computation )已成为很多组织面临的一个巨大挑战.我们已经有效地使用了一个可扩展的实时计算系统--开源的 Storm 工具,它是有 Twitter 开发,通常被称为"实时 Hadoop(real-time Hadoo
[转载] 使用 Twitter Storm 处理实时的大数据
转载自http://www.ibm.com/developerworks/cn/opensource/os-twitterstorm/ 流式处理大数据简介 Storm 是一个开源的.大数据处理系统,与其他系统不同,它旨在用于分布式实时处理且与语言无关.了解 Twitter Storm.它的架构,以及批处理和流式处理解决方案的发展形势. Hadoop(大数据分析领域无可争辩的王者)专注于批处理.这种模型对许多情形(比如为网页建立索引)已经足够,但还存在其他一些使用模型,它们需要来自高度动态的来源的
Storm+HBase实时实践
1.HBase Increment计数器 hbase counter的原理: read+count+write,正好完成,就是讲key的value读出,若存在,则完成累加,再写入,若不存在,则按"0"处理,再加上你需要累加的值. 传统上,如果没有 counter,当我们要给一个 column 的值 +1 或者其他数值时,就需要先从该 column 读取值,然后在客户端修改值,最后写回给 Region Server,即一个 Read-Modify-Write (RMW) 操作.在这样的过
Storm实现实时大数据分析(storm介绍,与Hadoop比较,)
一.storm与Hadoop对比 Hadoop: 全量数据处理使用的大多是鼎鼎大名的hadoop或者hive,作为一个批处理系统,hadoop以其吞吐量大.自动容错等优点,在海量数据处理上得到了广泛的使用. Hadoop下的Map/Reduce框架对于数据的处理流程是: 1. 将要处理的数据上传到Hadoop的文件系统HDFS中. 2. Map阶段 a) Master对Map的预处理:对于大量的数据进行切分,划分为M个16~64M的数据分片(可通过参数自定义分片大小) b) 调用Mapp
[翻译] Trident-ML:基于storm的实时在线机器学习库
最近在看一些在线机器学习的东西,看到了trident-ml, 觉得比较有意思,就翻译了一下,方便有兴趣的读者学习. 本文为作者(掰棒子熊)翻译自https://github.com/pmerienne/trident-ml的关于trident-ml的一个文档.可以转载,但是请注明出处. Trident-ML 是一个实时的在线机器学习库. 它运行你通过可伸缩的在线学习算法创建实时预测特征. 这个库基于Storm, 后者是一个分布式流处理系统,运行于计算机集群之上,支持横向扩展. 这个库中所包含的算
Storm实现实时大数据分析
当今世界,公司的日常运营经常会生成TB级别的数据.数据来源囊括了互联网装置可以捕获的任何类型数据,网站.社交媒体.交易型商业数据以及其它商业环境中创建的数据.考虑到数据的生成量,实时处理成为了许多机构需要面对的首要挑战.我们经常用的一个非常有效的开源实时计算工具就是Storm —— Twitter开发,通常被比作“实时的Hadoop”.然而Storm远比Hadoop来的简单,因为用它处理大数据不会带来新老技术的交替. Shruthi Kumar.Siddharth Patankar共同效力于In
[转]基于Storm的实时数据处理方案
1 文档说明 该文档描述的是以storm为主体的实时处理架构,该架构包括了数据收集部分,实时处理部分,及数据落地部分. 关于不同部分的技术选型与业务需求及个人对相关技术的熟悉度有关,会一一进行分析. 该架构是本人所掌握的一种架构,可能会与其他架构有相似的部分,个人会一一解释对其的理解. 这个文章写的很详细,相信对大家在实时处理整体理解上会有帮助的. 2 实时处理架构 2.1 整体架构图 架构说明: 整个数据处理流程包括四部分,一部分是数据接入层,该部分从前端业务系统获取数据:中间部分是最重要的s
使用Storm实现实时大数据分析(转)
原文链接:http://blog.csdn.net/hguisu/article/details/8454368 简单和明了,Storm让大数据分析变得轻松加愉快. 当今世界,公司的日常运营经常会生成TB级别的数据.数据来源囊括了互联网装置可以捕获的任何类型数据,网站.社交媒体.交易型商业数据以及其它商业环境中创建的数据.考虑到数据的生成量,实时处理成为了许多机构需要面对的首要挑战.我们经常用的一个非常有效的开源实时计算工具就是Storm —— Twitter开发,通常被比作“实时的Hadoop
Storm简介——实时流式计算介绍
概念 实时流式计算: 大数据环境下,流式数据将作为一种新型的数据类型,这种数据具有连续性.无限性和瞬时性.是实时数据处理所面向的数据类型,对这种流式数据的实时计算就是实时流式计算. 特征 实时流式计算与传统的数据处理技术不同,其具有一下特点: 低延迟:从处理的数据角度来看,每一条数据都可以在有限的时间内由系统成功处理完成,就是响应的时间很短. 高吞吐:从处理的过程角度来看,系统节点在单位时间内能够成功处理的数据量比较多,也就是高吞吐量.对于数据处理的目标本质来说高吞吐量和低延迟是一样的. 高容错
storm RollingTopWords 实时top-N计算任务窗口设计
转发请注明原创地址 http://www.cnblogs.com/dongxiao-yang/p/6381037.html 流式计算中我们经常会遇到需要将数据根据时间窗口进行批量统计的场景,窗口性质一般由两个参数规定:1 Window length: 可以用时间或者数量来定义窗口大小:2 Sliding interval: 窗口滑动的间隔 .通过这两个参数一般把window分成滚动窗口和滑动窗口. Sliding Window(滑动窗口) Tuples are grouped in window
《storm实战-构建大数据实时计算读书笔记》
自己的思考: 1.接收任务到任务的分发和协调 nimbus.supervisor.zookeeper 2.高容错性 各个组件都是无状态的,状态要自己去处理 3.消息 消息在流式框架的作用和可靠性处理,消息可靠处理的原理 4.事务消息 1.finishbatch 2.commit的强顺序性 3.事务性spout分为
Hadoop平台提供离线数据和Storm平台提供实时数据流
1.准备工作 2.一个Storm集群的基本组件 3.Topologies 4.Stream 5.数据模型(Data Model) 6.一个简单的Topology 7.流分组策略(Stream grouping) 8.使用别的语言来定义Bolt 9.可靠的消息处理 10.单机版安装指南 本文翻译自: https://github.com/nathanmarz/storm/wiki/Tutorial Storm是一个分布式的.高容错的实时计算系统.Storm对于实时计算的的意义相当于Hadoop对于
Storm日志分析调研及其实时架构
1.Storm第一个Demo 2.Windows下基于eclipse的Storm应用开发与调试 3.Storm实例+mysql数据库保存 4.Storm原理介绍 5. flume+kafka+storm+mysql 实时架构 1.Storm第一个Demo Storm运行模式: 本地模式(Local Mode): 即Topology(相当于一个任务,后续会详细讲解) 运行在本地机器的单一JVM上,这个模式主要用来开发.调试. 远程模式(Remote Mode):在这个模式,我们把我们的Topol
Storm 系列(二)实时平台介绍
Storm 系列(二)实时平台介绍 本章中的实时平台是指针对大数据进行实时分析的一整套系统,包括数据的收集.处理.存储等.一般而言,大数据有 4 个特点: Volumn(大量). Velocity(高速). Variety(多样). Value(价值),因此针对大数据的实时平台有以下特点. 延退 :高延迟意味着实时性的缺失. 分布式 :互联网时代,大多数的系统都是部署在一套由多台廉价 Linux 服务器组成的集群上. 高性能 :高速产生的大量数据,通过计算分析获取其中的价值,这需要高性能可靠的处
携程实时大数据平台演进:1/3 Storm应用已迁到JStorm
携程大数据平台负责人张翼分享携程的实时大数据平台的迭代,按照时间线介绍采用的技术以及踩过的坑.携程最初基于稳定和成熟度选择了Storm+Kafka,解决了数据共享.资源控制.监控告警.依赖管理等问题之后基本上覆盖了携程所有的技术团队.今年的两个新尝试是Streaming CQL(华为开源)和JStorm(阿里开源),意在提升开发效率.性能和处理消息拥塞能力,目前已有三分之一的Storm应用已经迁到JStorm 2.1上. 今天给大家分享的是携程在实时数据平台的一些实践,按照时间顺序来分享我们是怎
Storm大数据实时计算
大数据也是构建各类系统的时候一种全新的思维,以及架构理念,比如Storm,Hive,Spark,ZooKeeper,HBase,Elasticsearch,等等 storm,在做热数据这块,如果要做复杂的热数据的统计和分析,亿流量,高并发的场景下,最合适的技术就是storm,没有其他 举例说明: Storm:实时缓存热点数据统计->缓存预热->缓存热点数据自动降级 Hive:Hadoop生态栈里面,做数据仓库的一个系统,高并发访问下,海量请求日志的批量统计分析,日报周报月报,接口调用情况,业务
热门专题
python安装和当前的版本查看
ios tableview 怎么让一个section为一页
java Hssf 单元格复合样式设置
bootstrap模态框提交数据后没有清空数据
bootstrap table设置行列单元格样式
html使用frameset制作带导航栏的主页面
disabled不能传值问题
创建maven项目时原型加载列表一直不显示
localdatetime 转 json 不带T
qt中的speechd是什么
jenkins 删除文件 bat
thread 一个结束全部结束
springmvc请求路径扩展名为什么会被忽略
beautifulsoup库安装方法
phoenixOS 安卓操作系统
oracle服务启动和停止
py实现自动删除包含某个日期的文件
c#获取当前进程cpu占用率
如何修改oracle的date类型显示格式
android模拟滑屏