这是一篇被ICLR 2019 接收的论文.论文讨论了如何利用场景先验知识 (scene priors)来定位一个新场景(novel scene)中未曾见过的物体(unseen objects).举例来说,在「厨房」这一场景中,有一张图片显示「苹果」在冰箱的储物架上,同为水果的物体,如「橙子」,会出现在场景的哪个位置呢?论文提出了用基于强化学习的方法来定位「橙子」. 论文:VISUAL SEMANTIC NAVIGATION USING SCENE PRIORS 论文作者:Wei Yang , X
Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering-阅读总结 笔记不能简单的抄写文中的内容,得有自己的思考和理解. 一.基本信息 **\1.标题:**Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering **\2.作者:**Peter Anderson,Xiaodong
原文链接 本文修正部分错误. 以下是精心收集的一些非常好的开放数据集,也是做 AI 研究不容错过的数据集. 标签解释 [经典]这些是在 AI 领域中非常著名.众所周知的数据集.很少有研究者或工程师没有听说过它们. [有用]这些是更加接近现实世界的.精心设计的数据集.而且,这些数据集通常在产品和研发两方面都有用. [学术]这些是在机器学习和 AI 的学术研究中通常作为基准或基线使用的数据集.无论好坏,研究人员都使用这些数据集来验证算法. [陈旧]这些数据集,无论是否实用,已经有相当长历史了. 计算
Image Caption: Automatically describing the content of an image domain:CV+NLP Category:(by myself, you can read the survey for detail.) CNN+RNN, with attention mechanisms Reinforcement Learning GAN Compositional Architecture: Review Network, Guiding
论文题目:Beyond OCR + VQA: Involving OCR into the Flow for Robust and Accurate TextVQA 论文链接:https://dl.acm.org/doi/abs/10.1145/3474085.3475606 一.任务概述 视觉问答任务(VQA):将图像和关于图像的自然语言问题作为输入,并生成自然语言答案作为输出. 文本视觉问答任务(TextVQA):面向文字识别的问答任务. 二.Baseline 2.1 Baseline 1
1. 早期C. Koch与S. Ullman的研究工作. 他们提出了非常有影响力的生物启发模型. C. Koch and S. Ullman . Shifts in selective visual attention: Towards the underlying neural circuitry. Human Neurobiology, 4(4):219-227, 1985. C. Koch and T. Poggio. Predicting the Visual World: Silenc
Adding a controller to a ASP.NET Core MVC app with Visual Studio 在asp.net core mvc 中添加一个控制器 2017-2-28 5 分钟阅读时长 By Rick Anderson The Model-View-Controller (MVC) architectural pattern separates an app into three main components: Model, View, and Contro