LeetCode-5LongestPalindromicSubstring(C#)
# 题目
5. Longest Palindromic Substring
Given a string S, find the longest palindromic substring in S. You may assume that the maximum length of S is 1000, and there exists one unique longest palindromic substring.
# 思路
暴力破解(我和我同学也喜欢叫爆破):
先固定下标,再固定长度,这样就能取出字符串。判断字符串是否是回文串且长度比原来的回文串长,若是,更新,若否,继续取字符串。
// brute force: time O(n ^ 3) space O(n) result: TLE
public string LongestPalindrome(string s)
{
char[] strs = s.ToCharArray();
, end = ;
; i < strs.Length; i++) // start by index i
{
; j > i; j--) // end by index j
{
if (strs[i] == strs[j])
{
bool isPalindrome = true;
, l = j - ; k < l; k++, l--) // check whether substring is palindrome or not
{
if (strs[k] != strs[l])
{
isPalindrome = false;
break;
}
}
if (isPalindrome && j - i > end - start) // compare
{
start = i;
end = j;
}
}
}
}
);
}
暴力破解,时间复杂度O(n ^ 3),空间复杂度O(n),时间TLE。
我思维有点固化了。总想着先取字符串来判断是否是回文串,其实可以假定它是回文串,看它到底有多长。下面两个方法就是这样思考的。
优化暴力破解:
对于每一个字符,分奇偶,分别尝试去找最长的回文串,并记录长度。
// reference: https://discuss.leetcode.com/topic/23498/very-simple-clean-java-solution
// optimize brute force: time O(n ^ 2) space O(n) result: 156ms
public void palindrome(char[] strs, int left, int right, ref int start, ref int length) // judge palindrome
{
&& right <= strs.Length - && strs[left] != strs[right]) return;
>= && right + <= strs.Length - && strs[left - ] == strs[right + ])
{
left--;
right++;
}
;
if (length < newLength)
{
start = left;
length = newLength;
}
}
// optimize brute force : time O(n ^ 2) space O(n) result:
public string LongestPalindrome(string s)
{
) return s;
, length = ;
char[] strs = s.ToCharArray();
; i < strs.Length; i++)
{
palindrome(strs, i, i, ref start, ref length); // recrusively judge
palindrome(strs, i, i + , ref start, ref length);
}
return s.Substring(start, length);
}
优化暴力破解,时间复杂度O(n ^ 2),空间复杂度O(n),时间153ms。
优化遍历:
对于每一个字符,尝试去找最长的回文串,采取以下方法:
1、若是重复串,跳过重复部分(重复串怎么样都是回文串)。
2、非重复串,正常比对头尾。
3、设置下一个字符为非重复部分的下一个字符。
比如baaaaab,遇到第一个a的时候,直接忽略5个a(也就是默认他是回文串了),从b开始尝试寻找回文串。同时下一个需要判断的字符是从第二个b开始。
# 解决(优化遍历)
// reference: https://discuss.leetcode.com/topic/12187/simple-c-solution-8ms-13-lines/
// like cheating method: time O(n ^ 2) space O(n) result: 132ms
public string LongestPalindrome(string s)
{
char[] strs = s.ToCharArray();
, maxLength = , start = ;
)
{
int k = i, j = i; // j is left, i is middle, k is right
&& strs[k] == strs[k + ]) k++; // skip duplicate char
i = k + ; // set next begin index, we can skip duplicate char
&& k < s.Length - && strs[j - ] == strs[k + ]) // check palindrome
{
j--;
k++;
}
;
if (newLength > maxLength) // compare
{
start = j;
maxLength = newLength;
}
}
return s.Substring(start, maxLength);
}
优化遍历,时间复杂度O(n ^ 2),空间复杂度O(n),时间132ms。
# 题外话
动态规划也可以做。
具体参考https://discuss.leetcode.com/topic/23498/very-simple-clean-java-solution/12。
状态转移方程:palindrome[i][j] = palindrome[i + 1][j - 1] && s[i] == s[j] 。palindrome[i][j]表示s[i]到s[j]是否是回文串。
题主太懒了,交给你们了。
# 测试用例
static void Main(string[] args)
{
_5LongestPalindromicSubstring solution = new _5LongestPalindromicSubstring();
Debug.Assert(solution.LongestPalindrome("dddddd") == "dddddd", "wrong 1");
Debug.Assert(solution.LongestPalindrome("abbacdef") == "abba", "wrong 2");
Debug.Assert(solution.LongestPalindrome("cabbadef") == "abba", "wrong 3");
Debug.Assert(solution.LongestPalindrome("cabba") == "abba", "wrong 4");
Debug.Assert(solution.LongestPalindrome("caacbbbbbad") == "bbbbb", "wrong 5");
string veryLong = "eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee";
Debug.Assert(solution.LongestPalindrome(veryLong) == veryLong, "wrong 6");
Debug.Assert(solution.LongestPalindrome("a") == "a", "wrong 7");
Debug.Assert(solution.LongestPalindrome("abb") == "bb", "wrong 8");
}
# 地址
Q: https://leetcode.com/problems/longest-palindromic-substring/
A: https://github.com/mofadeyunduo/LeetCode/blob/master/5LongestPalindromicSubstring/5LongestPalindromicSubstring.cs
(希望各位多多支持本人刚刚建立的GitHub和博客,谢谢,有问题可以邮件609092186@qq.com或者留言,我尽快回复)
LeetCode-5LongestPalindromicSubstring(C#)的更多相关文章
- 我为什么要写LeetCode的博客?
# 增强学习成果 有一个研究成果,在学习中传授他人知识和讨论是最高效的做法,而看书则是最低效的做法(具体研究成果没找到地址).我写LeetCode博客主要目的是增强学习成果.当然,我也想出名,然而不知 ...
- LeetCode All in One 题目讲解汇总(持续更新中...)
终于将LeetCode的免费题刷完了,真是漫长的第一遍啊,估计很多题都忘的差不多了,这次开个题目汇总贴,并附上每道题目的解题连接,方便之后查阅吧~ 477 Total Hamming Distance ...
- [LeetCode] Longest Substring with At Least K Repeating Characters 至少有K个重复字符的最长子字符串
Find the length of the longest substring T of a given string (consists of lowercase letters only) su ...
- Leetcode 笔记 113 - Path Sum II
题目链接:Path Sum II | LeetCode OJ Given a binary tree and a sum, find all root-to-leaf paths where each ...
- Leetcode 笔记 112 - Path Sum
题目链接:Path Sum | LeetCode OJ Given a binary tree and a sum, determine if the tree has a root-to-leaf ...
- Leetcode 笔记 110 - Balanced Binary Tree
题目链接:Balanced Binary Tree | LeetCode OJ Given a binary tree, determine if it is height-balanced. For ...
- Leetcode 笔记 100 - Same Tree
题目链接:Same Tree | LeetCode OJ Given two binary trees, write a function to check if they are equal or ...
- Leetcode 笔记 99 - Recover Binary Search Tree
题目链接:Recover Binary Search Tree | LeetCode OJ Two elements of a binary search tree (BST) are swapped ...
- Leetcode 笔记 98 - Validate Binary Search Tree
题目链接:Validate Binary Search Tree | LeetCode OJ Given a binary tree, determine if it is a valid binar ...
- Leetcode 笔记 101 - Symmetric Tree
题目链接:Symmetric Tree | LeetCode OJ Given a binary tree, check whether it is a mirror of itself (ie, s ...
随机推荐
- CSS 3学习——animation动画
以下内容根据官方文档翻译以及自己的理解整理. 1. 介绍 本方案介绍动画(animations).通过动画,开发者可以将CSS属性值的变化指定为一个随时间变化的关键帧(keyframes)的集合.在 ...
- 【CSS进阶】伪元素的妙用--单标签之美
最近在研读 <CSS SECRET>(CSS揭秘)这本大作,对 CSS 有了更深层次的理解,折腾了下面这个项目: CSS3奇思妙想 -- Demo (请用 Chrome 浏览器打开,非常值 ...
- Drawable实战解析:Android XML shape 标签使用详解(apk瘦身,减少内存好帮手)
Android XML shape 标签使用详解 一个android开发者肯定懂得使用 xml 定义一个 Drawable,比如定义一个 rect 或者 circle 作为一个 View 的背景. ...
- 编写高质量代码:改善Java程序的151个建议(第6章:枚举和注解___建议88~92)
建议88:用枚举实现工厂方法模式更简洁 工厂方法模式(Factory Method Pattern)是" 创建对象的接口,让子类决定实例化哪一个类,并使一个类的实例化延迟到其它子类" ...
- 多本地代码工作点更新到2个远端GIT仓库
摘要:本文介绍了笔者多个本地工作节点(地方)的多台电脑(PC/笔记本电脑)同步源码到2个远端的GIT(一个GITHUB国外强制公开,一个oschina国内可不公开). 作者:太初 转载说明:请指明原作 ...
- 《Ansible权威指南》笔记(2)——Inventory配置
四.Inventory配置ansible通过Inventory来定义主机和组,使用时通过-i指定读取,默认/etc/ansible/hosts.可以存在多个Inventory,支持动态生成.1.定义主 ...
- PC虚拟现实应用的性能分析与优化:从CPU角度切入
如今,虚拟现实 (VR) 技术正日益受到欢迎,这主要得益于遵循摩尔定律的技术进步让这一全新体验在技术上成为可能.尽管虚拟现实能给用户带来身临其境般的超凡体验,但相比传统应用,其具有双目渲染.低延迟.高 ...
- 数据分布转换:非正态 -> 正态
来源:丁香园论坛:SPSS上的把非正态分布数据转换为正态分布数据 一楼 可以应用变量变换的方法,将不服从正态分布的资料转化为非正态分布或近似正态分布.常用的变量变换方法有对数变换.平方根变换.倒数变换 ...
- C#迪杰斯特拉算法
C#迪杰斯特拉算法 网上有许多版本的,自己还是写一个理解点 Dijkstra.cs public class Dijkstra { private List<Node> _nodes; p ...
- Vue.js——60分钟组件快速入门(上篇)
组件简介 组件系统是Vue.js其中一个重要的概念,它提供了一种抽象,让我们可以使用独立可复用的小组件来构建大型应用,任意类型的应用界面都可以抽象为一个组件树: 那么什么是组件呢?组件可以扩展HTML ...