本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作。

本文作者:ljh2000
作者博客:http://www.cnblogs.com/ljh2000-jump/
转载请注明出处,侵权必究,保留最终解释权!

 
Problem Description
The God of sheep decides to pixelate some pictures (i.e., change them into pictures with mosaic). Here's how he is gonna make it: for each picture, he divides the picture into n x n cells, where each cell is assigned a color value. Then he chooses a cell, and checks the color values in the L x L region whose center is at this specific cell. Assuming the maximum and minimum color values in the region is A and B respectively, he will replace the color value in the chosen cell with floor((A + B) / 2).

Can you help the
God of sheep?

 
Input
The first line contains an integer T (T ≤ 5) indicating
the number of test cases. Then T test cases follow.

Each test case begins
with an integer n (5 < n < 800). Then the following n rows describe the
picture to pixelate, where each row has n integers representing the original
color values. The j-th integer in the i-th row is the color value of cell (i, j)
of the picture. Color values are nonnegative integers and will not exceed
1,000,000,000 (10^9).

After the description of the picture, there is an
integer Q (Q ≤ 100000 (10^5)), indicating the number of mosaics.

Then Q
actions follow: the i-th row gives the i-th replacement made by the God of
sheep: xi, yi, Li (1 ≤ xi, yi ≤ n, 1 ≤ Li < 10000, Li is odd). This means the
God of sheep will change the color value in (xi, yi) (located at row xi and
column yi) according to the Li x Li region as described above. For example, an
query (2, 3, 3) means changing the color value of the cell at the second row and
the third column according to region (1, 2) (1, 3), (1, 4), (2, 2), (2, 3), (2,
4), (3, 2), (3, 3), (3, 4). Notice that if the region is not entirely inside the
picture, only cells that are both in the region and the picture are
considered.

Note that the God of sheep will do the replacement one by one
in the order given in the input.

 
Output
For each test case, print a line "Case #t:"(without
quotes, t means the index of the test case) at the beginning.

For each
action, print the new color value of the updated cell.

 
Sample Input
1
3
1 2 3
4 5 6
7 8 9
5
2 2 1
3 2 3
1 1 3
1 2 3
2 2 3
 
Sample Output
Case #1:
5
6
3
4
6
 
 
正解:二维线段树
解题报告:
  又调了一个晚上的题目…
  (每晚留一道题目调不完的debuff...)
  二维线段树相当于是维护了一个矩阵,不妨叫做主线段树和副线段树,那么主线段树上的每个节点都存了一棵副线段树(可以动态开节点呀),那么就没有区别了…
  只是要注意一点,modify了之后显然不能直接merge两个子树,复杂度是线性的...
  直接查询两个子树的这一位,取max/min然后在子树上直接modify即可。
  
 
//It is made by ljh2000
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <ctime>
#include <vector>
#include <queue>
#include <map>
#include <set>
#include <string>
#include <complex>
using namespace std;
typedef long long LL;
const int MAXN = 811;
const int MAXM = 5000011;
int n,m,ju[MAXN][MAXN],X[2],Y[2],cnt,rt,ans,CC;
struct node{ int l,r,ls,rs,maxl,minl,tree; }a[MAXM];
inline int getint(){
int w=0,q=0; char c=getchar(); while((c<'0'||c>'9') && c!='-') c=getchar();
if(c=='-') q=1,c=getchar(); while (c>='0'&&c<='9') w=w*10+c-'0',c=getchar(); return q?-w:w;
} namespace Seg_tree{
inline void build(int &k,int l,int r,int bel){
k=++cnt; a[k].l=l; a[k].r=r; if(l==r) { a[k].minl=a[k].maxl=ju[l][bel]; return ; }
int mid=(l+r)>>1; build(a[k].ls,l,mid,bel); build(a[k].rs,mid+1,r,bel);
a[k].minl=min(a[a[k].ls].minl,a[a[k].rs].minl); a[k].maxl=max(a[a[k].ls].maxl,a[a[k].rs].maxl);
} inline int query_min(int k,int l,int r){
if(Y[0]<=l && r<=Y[1]) return a[k].minl;
int mid=(l+r)>>1;
if(Y[0]>mid) return query_min(a[k].rs,mid+1,r);
else if(Y[1]<=mid) return query_min(a[k].ls,l,mid);
else return min(query_min(a[k].ls,l,mid),query_min(a[k].rs,mid+1,r));
} inline int query_max(int k,int l,int r){
if(Y[0]<=l && r<=Y[1]) return a[k].maxl;
int mid=(l+r)>>1;
if(Y[0]>mid) return query_max(a[k].rs,mid+1,r);
else if(Y[1]<=mid) return query_max(a[k].ls,l,mid);
else return max(query_max(a[k].ls,l,mid),query_max(a[k].rs,mid+1,r));
} inline void modify(int k,int l,int r,int y){
if(l==r) { a[k].minl=a[k].maxl=ans; return ; }
int mid=(l+r)>>1;
if(y<=mid) modify(a[k].ls,l,mid,y); else modify(a[k].rs,mid+1,r,y);
a[k].minl=min(a[a[k].ls].minl,a[a[k].rs].minl); a[k].maxl=max(a[a[k].ls].maxl,a[a[k].rs].maxl);
} inline void update_min(int k,int l,int r,int y){
if(l==r) { a[k].minl=CC; return ; }
int mid=(l+r)>>1;
if(y<=mid) update_min(a[k].ls,l,mid,y); else update_min(a[k].rs,mid+1,r,y);
a[k].minl=min(a[a[k].ls].minl,a[a[k].rs].minl);
} inline void update_max(int k,int l,int r,int y){
if(l==r) { a[k].maxl=CC; return ; }
int mid=(l+r)>>1;
if(y<=mid) update_max(a[k].ls,l,mid,y); else update_max(a[k].rs,mid+1,r,y);
a[k].maxl=max(a[a[k].ls].maxl,a[a[k].rs].maxl);
}
} inline void merge(int &k,node q,node qq){
if(!k) k=++cnt; a[k].maxl=max(q.maxl,qq.maxl); a[k].minl=min(q.minl,qq.minl);
a[k].l=q.l; a[k].r=q.r; if(q.l==q.r) return ;
merge(a[k].ls,a[q.ls],a[qq.ls]);
merge(a[k].rs,a[q.rs],a[qq.rs]);
} inline void build(int &k,int l,int r){
k=++cnt; a[k].l=l; a[k].r=r;
if(l==r) {
Seg_tree::build(a[k].tree,1,n,l);
return;
}
int mid=(l+r)>>1; build(a[k].ls,l,mid); build(a[k].rs,mid+1,r);
merge(a[k].tree,a[ a[a[k].ls].tree ],a[ a[a[k].rs].tree ]);
} inline int query_min(int k,int l,int r){
if(X[0]<=l && r<=X[1]) return Seg_tree::query_min(a[k].tree,1,n);
int mid=(l+r)>>1;
if(X[0]>mid) return query_min(a[k].rs,mid+1,r);
else if(X[1]<=mid) return query_min(a[k].ls,l,mid);
else return min(query_min(a[k].ls,l,mid),query_min(a[k].rs,mid+1,r));
} inline int query_max(int k,int l,int r){
if(X[0]<=l && r<=X[1]) return Seg_tree::query_max(a[k].tree,1,n);
int mid=(l+r)>>1;
if(X[0]>mid) return query_max(a[k].rs,mid+1,r);
else if(X[1]<=mid) return query_max(a[k].ls,l,mid);
else return max(query_max(a[k].ls,l,mid),query_max(a[k].rs,mid+1,r));
} inline void modify(int k,int l,int r,int x,int y){
if(l==r) { Seg_tree::modify(a[k].tree,1,n,y); return ; }
int mid=(l+r)>>1;
if(x<=mid) modify(a[k].ls,l,mid,x,y);
else modify(a[k].rs,mid+1,r,x,y); int lc=a[k].ls,rc=a[k].rs;
int lmin=Seg_tree::query_min(a[lc].tree,a[a[lc].tree].l,a[a[lc].tree].r);
int rmin=Seg_tree::query_min(a[rc].tree,a[a[rc].tree].l,a[a[rc].tree].r);
CC=min(lmin,rmin); Seg_tree::update_min(a[k].tree,a[a[k].tree].l,a[a[k].tree].r,y); int lmax=Seg_tree::query_max(a[lc].tree,a[a[lc].tree].l,a[a[lc].tree].r);
int rmax=Seg_tree::query_max(a[rc].tree,a[a[rc].tree].l,a[a[rc].tree].r);
CC=max(lmax,rmax); Seg_tree::update_max(a[k].tree,a[a[k].tree].l,a[a[k].tree].r,y);
//merge(a[k].tree,a[ a[a[k].ls].tree ],a[ a[a[k].rs].tree ]);
} inline void work(){
int T=getint();
for(int Case=1;Case<=T;Case++) {
printf("Case #%d:\n",Case); n=getint(); for(int i=1;i<=n;i++) for(int j=1;j<=n;j++) ju[i][j]=getint();
for(int i=1;i<=cnt;i++) a[i].tree=a[i].ls=a[i].rs=0; cnt=0; rt=0;
build(rt,1,n); m=getint(); int x,y,z,da,xiao;
while(m--) {
y=getint(); x=getint(); z=getint(); z>>=1;
X[0]=max(x-z,1); X[1]=min(x+z,n);
Y[0]=max(y-z,1); Y[1]=min(y+z,n);
da=query_max(rt,1,n);
xiao=query_min(rt,1,n);
ans=(da+xiao)>>1; printf("%d\n",ans);
Y[0]=Y[1]=y;
modify(rt,1,n,x,y);
}
} } int main()
{
work();
return 0;
}

  

HDU4819 Mosaic的更多相关文章

  1. HDU4819 Mosaic【树套树】

    LINK 题目大意 给你一个\(n*n\)矩阵,每个点有初始权值 q次询问每次把一个矩形的中心节点变成这个矩形中最大值和最小值的平均数 思路 很显然的树套树啊 就是一开始傻逼了没想到怎么去维护这个东西 ...

  2. HDU 4819 Mosaic (二维线段树)

    Mosaic Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 102400/102400 K (Java/Others)Total S ...

  3. HDU 4819 Mosaic(13年长春现场 二维线段树)

    HDU 4819 Mosaic 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4819 题意:给定一个n*n的矩阵,每次给定一个子矩阵区域(x,y,l) ...

  4. URAL Mosaic(并查集)(欧拉回路)

    Mosaic Time limit: 0.25 secondMemory limit: 64 MB There's no doubt that one of the most important an ...

  5. Mosaic HDU 4819 二维线段树入门题

    Mosaic Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 102400/102400 K (Java/Others)Total S ...

  6. HDU 4819 Mosaic 二维线段树

    Mosaic Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.hust.edu.cn/vjudge/contest/view.action ...

  7. 用opencv画矩形打上马赛克Mosaic

    /*----------------------------------------------------------------------------- *   *   版权声明: *   可以 ...

  8. Mosaic 前端微服务框架

    Mosaic 是一系列的服务.库,集成在一起,定义了组件如何彼此交互,可以用来支持大规模的web 站点开发 一张架构图 说明 尽管上图中的一些组件已经迭代演化了(skipper 的route 配置,上 ...

  9. 镶嵌数据集 Mosaic Dataset 的常见数据组织方式

    镶嵌数据集是ESRI公司推出一种用于管理海量影像数据的数据模型,定义在GeoDatabase数据模型中. 它的常见数据组织方式有两种: 1. 源镶嵌数据集 Source Mosaic Dataset ...

随机推荐

  1. 【BZOJ2282】[Sdoi2011]消防 树形DP+双指针法+单调队列

    [BZOJ2282][Sdoi2011]消防 Description 某个国家有n个城市,这n个城市中任意两个都连通且有唯一一条路径,每条连通两个城市的道路的长度为zi(zi<=1000). 这 ...

  2. 《从零开始学Swift》学习笔记(Day 6)——哎呀常量和变量都该什么时候用啊?

    原创文章,欢迎转载.转载请注明:关东升的博客 使用var还是let? 在我们开发过程中啊什么时候定义关键字为var,还是定义为let呢? 其实啊都能满足我们的需求,那我们到底应该如何选择? 例如:可以 ...

  3. C语言练习题

    C语言练习题 1. 以下选项中,合法的一组C语言数值常量是(     ) A)028  .5e-3  .0xf B)12.  OXa23   4.5e0 C).177   4e1.5  Oabc D) ...

  4. Introduction to Mathematical Thinking - Week 6 - Proofs with Quantifieers

    Mthod of proof by cases 证明完所有的条件分支,然后得出结论. 证明任意 使用任意 注意,对于一个任意的东西,你不知道它的具体信息.比如对于任意正数,你不知道它是 1 还是 2等 ...

  5. 分布式缓存的一致性Hash算法 2 32

    w 李智慧

  6. <2013 12 17> 专业技能

    Specialties: • Mechanical design modeling using Pro/ENGINEER and SolidWorks.• Robot control, path pl ...

  7. 在Tomcat配置JNDI数据源的三种方式

    最近使用到了在tomcat下配置数据源的内容,在这里转载一篇文章记录下 转载自: http://blog.csdn.net/dyllove98/article/details/7706218 在我过去 ...

  8. 兼容ie的background-size: cover;

    .bg{ background: url() no-repeat; background-size:cover; filter: progid:DXImageTransform.Microsoft.A ...

  9. Ubuntu系统下完全卸载和安装Mysql

    删除 mysql sudo apt-get autoremove --purge mysql-server-5.0 sudo apt-get remove mysql-server sudo apt- ...

  10. Springboot 错误信息:Required String parameter 'loginname' is not present 引发的研究

    @PostMapping("/reg/change")public CommonSdo change( @RequestParam(value = "oldPasswor ...