【题解】Bzoj2560串珠子
挺强的……容斥+状压DP。首先想到如果可以求出f[k],f[k]代表联通状态为k的情况下的合法方案数,则f[k] = g[k] - 非法方案数。g[k]为总的方案数,这是容易求得的。那么非法方案数我们可以枚举 k 的子集 j,则 j 联通而剩下的则随意连(不与j联通)。可是做到这里以为自己做出来了,实际上并没有……
注意到枚举到子集 j 时,若 s' = k - j, 那如果 s' 中有一个联通的方案 s'',我们在这里减去一次,在之后枚举到s''时又会枚举到这个方案一次。实际上,这也就是说0111与1000这两个子集是对称的。所以我们为了避免这样的情况,就锁定一个点a,使得点 a 一定不出现在集合 j 中,可以使得 a 只能出现在集合 s' 中,也就避免了重复。
代码有参考,如有雷同,是我抄的 (o´ω`o)ノ
#include <bits/stdc++.h>
using namespace std;
#define maxn 20
#define maxm ((1 << 16) + 2)
#define mod 1000000007
#define int long long
int n, bin[maxn], a[maxn][maxn];
int f[maxm], g[maxm]; int read()
{
int x = , k = ;
char c;
c = getchar();
while(c < '' || c > '') { if(c == '-') k = -; c = getchar(); }
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * k;
} signed main()
{
n = read(); bin[] = ;
for(int i = ; i <= n; i ++)
for(int j = ; j <= n; j ++)
a[i][j] = read();
for(int i = ; i <= n; i ++) bin[i] = bin[i - ] << ;
for(int k = ; k < bin[n]; ++ k)
{
f[k] = ;
for(int i = ; i < n; i ++)
if(k & bin[i - ])
for(int j = i + ; j <= n; j ++)
if(k & bin[j - ])
f[k] = f[k] * (a[i][j] + ) % mod;
g[k] = f[k]; int K = (k ^ (k & -k));
for(int j = K; j; j = (j - ) & K)
f[k] = (f[k] - g[j] * f[k ^ j] % mod + mod) % mod;
}
printf("%lld\n", f[bin[n] - ]);
return ;
}
【题解】Bzoj2560串珠子的更多相关文章
- 题解-bzoj2560 串珠子
刚被教练数落了一通,心情不好,来写篇题解 Problem bzoj2560 题目简述:给定\(n\)个点的,每两个点\(i,j\)之间有\(c_{i,j}\)条直接相连的路(其中只能选一条或不选),问 ...
- bzoj2560串珠子 状压dp+容斥(?)
2560: 串珠子 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 515 Solved: 348[Submit][Status][Discuss] ...
- bzoj2560 串珠子
Description 铭铭有n个十分漂亮的珠子和若干根颜色不同的绳子.现在铭铭想用绳子把所有的珠子连接成一个整体. 现在已知所有珠子互不相同,用整数1到n编号.对于第i个珠子和第j个珠子,可以选择不 ...
- bzoj2560串珠子(子集dp)
铭铭有n个十分漂亮的珠子和若干根颜色不同的绳子.现在铭铭想用绳子把所有的珠子连接成一个整体. 现在已知所有珠子互不相同,用整数1到n编号.对于第i个珠子和第j个珠子,可以选择不用绳子连接,或者在ci, ...
- [BZOJ2560]串珠子:状压DP+容斥原理
分析 为什么我去年6月做过这道题啊,估计当时抄的题解. 具体做法就是令\(f[S]\)表示保证连通点集\(S\)的方案数,\(g[S]\)表示不保证连通点集\(S\)的方案数. 容易想到: \[g[S ...
- bzoj2560 串珠子 状压DP
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=2560 题解 大概是这类关于无向图的联通性计数的套路了. 一开始我想的是这样的,考虑容斥,那么就 ...
- BZOJ2560串珠子
/* 很清新的一道题(相比上一道题) g[S]表示该 S集合中胡乱连的所有方案数, f[S] 表示S集合的答案 那么F[S] 等于G[S]减去不合法的部分方案 不合法的方案就枚举合法的部分就好了 g[ ...
- 2019.02.09 bzoj2560: 串珠子(状压dp+简单容斥)
传送门 题意简述:nnn个点的带边权无向图,定义一个图的权值是所有边的积,问所有nnn个点都连通的子图的权值之和. 思路: fif_ifi表示保证集合iii中所有点都连通其余点随意的方案数. gig ...
- bzoj2560串珠子——子集DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2560 转载: 很明显的状压dp 一开始写的dp可能会出现重复统计的情况 而且难以去重 假设 ...
随机推荐
- 关于Ext.js和Ext.Net的杂谈
最近几年比较火的前端js框架extjs 算是其中的佼佼者.统一的UI设计,强悍的组件及丰富的插件,对浏览器良好的兼容性等优点使得许多公司使用Extjs,同时也使得无数程序猿开始研究这个玩意也包括我在内 ...
- php-语言参考-类型3.2-未完待续
一,PHP变量的8个类型 四种标量类型: boolean (布尔型) integer (整型) float (浮点型, 也称作 double) string (字符串) 两种复合类型: array ( ...
- 图的遍历(Python实现)
图的遍历(Python实现) 记录两种图的遍历算法——广度优先(BFS)与深度优先(DFS). 图(graph)在物理存储上采用邻接表,而邻接表是用python中的字典来实现的. 两种遍历方式的代码如 ...
- shell重温---基础篇(参数传递&echo命令)
经过前两天的学习,关于shell的基础算是知道的一般般啦,最起码不算是小白了(纯属意淫).今天就来点干货哈. 首先是运行shell脚本时的参数传递.脚本内获取参数的格式为$n.n代表了一个数字,例 ...
- P1823 音乐会的等待(单调栈)
P1823 音乐会的等待 题目描述 N个人正在排队进入一个音乐会.人们等得很无聊,于是他们开始转来转去,想在队伍里寻找自己的熟人.队列中任意两个人A和B,如果他们是相邻或他们之间没有人比A或B高,那么 ...
- springmvc基础篇—使用注解方式为前台提供数据
一.新建一个Controller package cn.cfs.springmvc.service; import java.util.ArrayList; import java.util.Hash ...
- 「暑期训练」「基础DP」 Monkey and Banana (HDU-1069)
题意与分析 给定立方体(个数不限),求最多能堆叠(堆叠要求上方的方块严格小于下方方块)的高度. 表面上个数不限,问题是堆叠的要求决定了每个方块最多可以使用三次.然后就是对3n" role=& ...
- Qt Qwdget 汽车仪表知识点拆解8 淡入效果
先贴上效果图,注意,没有写逻辑,都是乱动的 看下面的开始,开始的时候有一个带入的效果,这里有一个坑, 网上大部分都是调用下面这个函数 setWindowOpacity(); 但是,你会发现,在你的子窗 ...
- jmeter之HTTP请求
1.添加一个线程组:Test plan_添加_Threads(users)_线程组(右键操作),如下图: 2.添加一个HTTP请求:线程组_添加_sample_HTTP请求(右键操作),如下图: 3. ...
- 7.0 启动app权限弹窗问题
这里提供两种解决方案! 1.安卓6.0+是可以直接利用uiautomator定位元素点击!这个不细说,定位方式很多种...这个等待时间大家自己定大概两到三秒即可! #安卓6.0+点击方式driver. ...