DP(悬线法)【P1169】 [ZJOI2007]棋盘制作
顾z
你没有发现两个字里的blog都不一样嘛 qwq
题目描述-->p1169 棋盘制作
题目大意
给定一个01棋盘,求其中01交错的最大正方形与矩形。
解题思路:
动态规划---悬线法
以下内容部分参考@Clove_unique
悬线法
用途:
解决给定矩阵中满足条件的最大子矩阵
做法:
用一条线(横竖貌似都行)左右移动直到不满足约束条件或者到达边界
定义几个东西:
\(left[i][j]\):代表从\((i,j)\)能到达的最左位置
\(right[i][j]\):代表从\((i,j)\)能到达的最右位置
\(up[i][j]\):代表从\((i,j)\)向上扩展最长长度.
递推公式:
\]
\]
至于为什么递推公式中考虑上一层的情况?
是因为up数组的定义,up数组代表向上扩展最长长度,
所以需要考虑上一层的情况.
解决
求解正方形&&长方形的情况即可。
题目要求01交错,所以"!="即可
-------------------代码-------------------
#include<bits/stdc++.h>
#define IL inline
#define RI register int
#define maxn 2001
using namespace std;
IL void read(int &x){
int f=1;x=0;char s=getchar();
while(s>'9'||s<'0'){if(s=='-')f=-1;s=getchar();}
while(s<='9'&&s>='0'){x=x*10+s-'0';s=getchar();}
x*=f;
}
int res[maxn][maxn],left[maxn][maxn],right[maxn][maxn],up[maxn][maxn];
int n,m,ans1,ans2;
int main()
{
read(n),read(m);
for(RI i=1;i<=n;i++)
for(RI j=1;j<=m;j++)
{
read(res[i][j]);
left[i][j]=right[i][j]=j;
up[i][j]=1;
}
for(RI i=1;i<=n;i++)
for(RI j=2;j<=m;j++)
if(res[i][j]!=res[i][j-1])
left[i][j]=left[i][j-1];//预处理左边界
for(RI i=1;i<=n;i++)
for(RI j=m-1;j>0;j--)
if(res[i][j]!=res[i][j+1])
right[i][j]=right[i][j+1];//预处理右边界
for(RI i=1;i<=n;i++)
for(RI j=1;j<=m;j++)
{
if(i>1&&res[i][j]!=res[i-1][j])
{
left[i][j]=max(left[i][j],left[i-1][j]);
right[i][j]=min(right[i][j],right[i-1][j]);
up[i][j]=up[i-1][j]+1;
}
int a=right[i][j]-left[i][j]+1; //横向长度
int b=min(a,up[i][j]);//竖向长度
//printf("a:%d b:%d\n",a,b);
ans1=max(ans1,b*b);//正方形
ans2=max(ans2,a*up[i][j]);//长方形
}
printf("%d\n%d",ans1,ans2);
}
悬线法题目:P1169 棋盘制作 p4147 玉蟾宫 p2701 巨大的牛棚 p1387 最大正方形
UPD
2018.09.26
Q :如图这种情况下,我们根据状态转移方程求出的是黑色部分的面积.而实际上我们更大的面积为红色部分,这样的话,悬线法不就错了?
(如果你也有这方面的疑惑,请细读下面的话)

A:红色部分会被考虑到.
考虑我们代码中的这一部分
if(i>1&&res[i][j]!=res[i-1][j])
{
left[i][j]=max(left[i][j],left[i-1][j]);
right[i][j]=min(right[i][j],right[i-1][j]);
up[i][j]=up[i-1][j]+1;
}
if语句执行的条件是\(res[i][j]!=res[i-1][j]\),即只有满足条件的情况下我们才能更改当前位置\((i,j)\)的\(left\)数组与\(right\)数组.
而不满足条件时,我们当前位置\((i,j)\)的\(left,right,up\)数组并不会改变.
所以说当再次进行状态转移的时候,我们又能根据图中这些未被更新的点(即蓝色部分)的数组去求解出红色部分的面积.

还有一点需要注意的是,在某一行的一段的合法序列中,他们的\(left\)数组与\(right\)数组所指位置相同.(这个根据状态转移方程应该不难理解.
例如这样,这一段合法序列中位置的\(left[i][j]\)所指位置皆为红色部分,\(right[i][j]\)所指位置皆为蓝色部分.

如果不能理解的话可以私信问我的 qwq.
已经尽力写的很详细啦
DP(悬线法)【P1169】 [ZJOI2007]棋盘制作的更多相关文章
- 洛谷P1169 [ZJOI2007]棋盘制作 悬线法 动态规划
P1169 [ZJOI2007]棋盘制作 (逼着自己做DP 题意: 给定一个包含0,1的矩阵,求出一个面积最大的正方形矩阵和长方形矩阵,要求矩阵中相邻两个的值不同. 思路: 悬线法. 用途: 解决给定 ...
- BZOJ 1057: [ZJOI2007]棋盘制作( dp + 悬线法 )
对于第一问, 简单的dp. f(i, j)表示以(i, j)为左上角的最大正方形, f(i, j) = min( f(i + 1, j), f(i, j + 1), f(i + 1, j + 1)) ...
- 悬线法 || BZOJ 1057: [ZJOI2007]棋盘制作 || Luogu P1169 [ZJOI2007]棋盘制作
题面:P1169 [ZJOI2007]棋盘制作 题解: 基本是悬线法板子,只是建图判断时有一点点不同. 代码: #include<cstdio> #include<cstring&g ...
- P1169 [ZJOI2007]棋盘制作 && 悬线法
P1169 [ZJOI2007]棋盘制作 给出一个 \(N * M\) 的 \(01\) 矩阵, 求最大的正方形和最大的矩形交错子矩阵 \(n , m \leq 2000\) 悬线法 悬线法可以求出给 ...
- 洛谷 P1169 [ZJOI2007]棋盘制作
2016-05-31 14:56:17 题目链接: 洛谷 P1169 [ZJOI2007]棋盘制作 题目大意: 给定一块矩形,求出满足棋盘式黑白间隔的最大矩形大小和最大正方形大小 解法: 神犇王知昆的 ...
- [luogu P1169] [ZJOI2007]棋盘制作
[luogu P1169] [ZJOI2007]棋盘制作 题目描述 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8*8大小的 ...
- P1169 [ZJOI2007]棋盘制作 DP悬线法
题目描述 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8 \times 88×8大小的黑白相间的方阵,对应八八六十四卦,黑白 ...
- 【题解】洛谷P1169 [ZJOI2007] 棋盘制作(坐标DP+悬线法)
次元传送门:洛谷P1169 思路 浙江省选果然不一般 用到一个从来没有听过的算法 悬线法: 所谓悬线法 就是用一条线(长度任意)在矩阵中判断这条线能到达的最左边和最右边及这条线的长度 即可得到这个矩阵 ...
- P1169 [ZJOI2007]棋盘制作[悬线法/二维dp]
题目描述 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8 \times 88×8大小的黑白相间的方阵,对应八八六十四卦,黑白 ...
随机推荐
- Word2010 自动生成二级编号
http://jingyan.baidu.com/article/3ea5148901919752e61bbafe.html
- 遇到问题---java---myeclipse发布项目打包项目resource资源有缓存---log4j.properties新配置不起作用
在使用myeclipse过程中遇到一个很奇怪的问题,无论是在myeclipse中deploy发布到tomcat或者打包打成war后在tomcat中运行解压,resource都有缓存的感觉. 比较明显的 ...
- dhcp 和ntpdate时间同步
为了防止路由器的dhcp服务干扰实验,我们2台机器分别新加了1快网卡. vmnet4 dhcp安装 [root@ygy130 ~]# yum -y install dhcp 将配置文件放在/etc/d ...
- mysql5.7.22以上版本忘记密码时这样修改
1.关闭mysql服务 net stop mysql 2.找到mysql安装路径找到 my.ini 打开在 [mysqld] 下添加 skip-grant-tables 跳过密码校验 3.登陆mysq ...
- TCP ------ TCP四次挥手(断开连接)及断开过程
1.正常情况下,调用close(),产生的其中一个效果就是发送FIN,只有双方都调用close(),才会出现正常的四次挥手. 2.如果是服务器,发起四次挥手是在关闭accept()返回的套接字,而不是 ...
- APP兼容性测试
一.APP兼容性范围以及问题 1.硬件 各个硬件结构 2.软硬件之间 硬件dll库(C++) 软硬件之间的通信,各个厂商提供的ROM 3.软件 浏览器.操作系统.数据库.手机.功能兼容性(功能修改,二 ...
- java 构造函数问题
1.构造函数什么时候被调用,被谁调用? 转摘:http://bbs.csdn.net/topics/350231037 当然,只有在NEW的时候,才会真正的创建这个对象,只有在创建时才会调用该类的构造 ...
- oracle有关游标的知识
一:前言 今天我自己第二次写游标,我擦,觉得自己在数据库方面需要很大的提高啊.今天遇到三个问题,第一个是oracle数据库中的数据拆分的问题,这个我用regexp_substr来进行解决,第二个问题就 ...
- python3 迭代器,生成器
一 .什么是迭代 1. 重复 2.下次重复一定是基于上一次的结果而来 while True: cmd=input(':') print(cmd) l=[1,2,3,4] count=0 while c ...
- wxpython布局管理部件wx.gridbagsizer用法示例
text = ("This is text box") panel = wx.Panel(self, -1) chkAll1 = wx.CheckB ...