给定一个数组a[1,2,..,n] 。定义数组第i位上的减操作:把ai和ai+1换成ai - ai+1。输入一个n位数组以及目标整数t,求一个n-1次操作序列,使得最后剩下的数等于t
最后输出依此操作的i

输入:第一行一个N,一个T,接下来N行,每行一个正整数ai
输出:依次输出被操作的位置i

首先对题目进行分析后,似乎没有什么好的思路。
从结果入手。
对于最后的得到的整数,肯定是将原数列中一些数前加上了符号,然后将数列加在一起的操作。
这样我们就避免了麻烦的数组操作。‘

这样我们将题目转换成了:
一个数列[a1, a2, ....aN],对于数组中的数,将部分正整数变为负数,使整个数组的和为t,最后输出将哪些数变为负数
其中,从原题中我们可以知道:由于第1个数前没有数,所以第1个数不可能加负数,这样我们想,假设最后剩下两个数a1, a2,由原题目我们知道,要想把这两个数化为一个整数,第二个数必须为负数。
因此,在最初,第一个数必须为正,第二个数必须为负数。

然后整理能够描述状态空间的信息:
1.一个正整数i,表示进行到了第i个数
2.标记-1或1,表示第i个数取负还是取正
3.一个整数,表示进行到第i个数时,前i个数的和

接着我们要确定的是第i个数取正还是取负,然后我们还需要前i-1个数的和,但是我们能够注意到的是,前i-1个数的和是不确定的,对于i前的除了1,2位置的数,每一个数都有取正和取负两个操作,由于i可能很大
因此前i-1个数的和的结果也很多,所以对于i-1个数的和是不确定的,而对于第i个数取正还是取负,一共只有两个情况。
这样我们只能将前i-1个数的和作为变量,加一个维度,用来描述状态空间。
设f[i, j] = k表示到第i个数,前i个数的和为j时,第i个数的标记为k
这样问题的重点就在于如何记录路径了
对于我们的思路肯定是倒推回去
我们试着从f[][t]推回去
但是对于第一维,我们是并不确定的,
我们只能试着将i从2到n一个一个搜,但是注意的是i不能从1开始,最后我们处理1时再说原因
我们从我们的策略分析:我们可以发现,我们首先需要输出的显然是一路倒推后标记为1的i值,但是我们有一点就是我们每操作一个i,i之后的数的下标会全部减1。
因此首先我们首先要从答案一路逆推回去,同时开一个新数组,在第i个位置标记这个数是取正还是取负。
然后首先输出所有标记取正的下标,但是我们知道一个操作结束后后面的下标会变,所以我们设一个新的变量记录在某个位置之前操作了多少次,例如:我们设我们现在第i个位置,前面操作了cnt次,这样i的下标就应该因为操作而被迫变更了cnt次,但是观察样例的推断我们可以发现,在样例中,原本i = 2时,i = 2理当是正的,但是在最初我们全部将i = 2的情况标记为负了,所以这就是说,类推到所有情况,所有取正的下标,在原题i和i+1的
情况中,实际上取正的是i+1,所以对于取正的位置的下标,除了要减去cnt外,还要再减去1
最后我们讨论输出1的情况,我们相当我们吧所有取正的情况输出后,操作次数cnt,很可能(很大可能)并不到n-1,一方面是因为刚才我们没有输出1,但另一方面,存在cnt与n-1的差距不止1,这种情况说明在最后,在进行了全部的操作后,最后所有剩下的数不再进行取正操作,也就是说除了1之外全部取为了负数,例如: 1 2 3 4 5 6 ,除了1之外,2,3,4,5,6全部标成取负号,这意味着在这些操作中,所有的i全部取为1,所以我们就要输出
n-1-cnt个1,当然也可以是在所有在标记为取负的位置输出'1',但是我们上面说了因为2的符号强制取负的关系,下标除了减去cnt还要再减去1,但是1是不受影响的,原因非常简单:下标1在下标2之前,所以下标1不受下标2的影响

最后顺便批判一番!AC程序过不了样例系列!!!!!!

 #include<iostream>
#include<iomanip>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<ctime>
#include<cstdlib>
#include<cmath>
using namespace std;
const int maxn = ;
const int maxt = ;
const int quz = ;
int n, t;
int f[maxn][maxt];
int a[maxn];
int ans[maxn]; inline int read() {
int x = , y = ;
char ch = getchar();
while(!isdigit(ch)) {
if(ch == '-') y = -;
ch = getchar();
}
while(isdigit(ch)) {
x = (x << ) + (x << ) + ch - '';
ch = getchar();
}
return x * y;
} int main() {
memset(f, , sizeof(f));
n = read(), t = read();
for(int i = ; i <= n; ++i)
a[i] = read();
f[][a[] + quz] = ;
f[][a[] - a[] + quz] = -;
for(int i = ; i <= n; ++i)
for(int j = - + quz; j <= + quz; ++j) {
if(f[i - ][j] != ) {
f[i][a[i] + j] = ;
f[i][j - a[i]] = -;
}
}
int s = quz + t;
for(int i = n; i >= ; --i) {
ans[i] = f[i][s];
if(ans[i] == )
s -= a[i];
else if(ans[i] == -)
s += a[i];
}
int cnt = ;
for(int i = ; i <= n; ++i)
if(ans[i] == ) {
cout << i - cnt - << '\n';
cnt++;
}
for(int i = ; i <= n; ++i)
if(ans[i] == -)
cout << << '\n';
/* for(; cnt + 1 <= n - 1; cnt++)
cout << 1 << '\n';*/
return ;
}

POJ 1722 SUBTRACT的更多相关文章

  1. $2019$ 暑期刷题记录1:(算法竞赛DP练习)

    $ 2019 $ 暑期刷题记录: $ POJ~1952~~BUY~LOW, BUY~LOWER: $ (复杂度优化) 题目大意:统计可重序列中最长上升子序列的方案数. 题目很直接的说明了所求为 $ L ...

  2. poj动态规划列表

    [1]POJ 动态规划题目列表 容易: 1018, 1050, 1083, 1088, 1125, 1143, 1157, 1163, 1178, 1179, 1189, 1208, 1276, 13 ...

  3. POJ 动态规划题目列表

    ]POJ 动态规划题目列表 容易: 1018, 1050, 1083, 1088, 1125, 1143, 1157, 1163, 1178, 1179, 1189, 1208, 1276, 1322 ...

  4. [转] POJ DP问题

    列表一:经典题目题号:容易: 1018, 1050, 1083, 1088, 1125, 1143, 1157, 1163, 1178, 1179, 1189, 1191,1208, 1276, 13 ...

  5. POJ动态规划题目列表

    列表一:经典题目题号:容易: 1018, 1050, 1083, 1088, 1125, 1143, 1157, 1163, 1178, 1179, 1189, 1191,1208, 1276, 13 ...

  6. DP题目列表/弟屁专题

    声明: 1.这份列表不是我原创的,放到这里便于自己浏览和查找题目. ※最近更新:Poj斜率优化题目 1180,2018,3709 列表一:经典题目题号:容易: 1018, 1050, 1083, 10 ...

  7. poj 1737 Connected Graph

    // poj 1737 Connected Graph // // 题目大意: // // 带标号的连通分量计数 // // 解题思路: // // 设f(n)为连通图的数量,g(n)为非连通图的数量 ...

  8. poj 题目分类(1)

    poj 题目分类 按照ac的代码长度分类(主要参考最短代码和自己写的代码) 短代码:0.01K--0.50K:中短代码:0.51K--1.00K:中等代码量:1.01K--2.00K:长代码:2.01 ...

  9. POJ题目分类(按初级\中级\高级等分类,有助于大家根据个人情况学习)

    本文来自:http://www.cppblog.com/snowshine09/archive/2011/08/02/152272.spx 多版本的POJ分类 流传最广的一种分类: 初期: 一.基本算 ...

随机推荐

  1. 【BZOJ 3376】[Usaco2004 Open]Cube Stacking 方块游戏 带权并查集

    这道题一开始以为是平衡树结果发现复杂度过不去,然后发现我们一直合并而且只是记录到最低的距离,那么就是带权并查集了,带权并查集的权一般是到根的距离,因为不算根要好打,不过还有一些其他的,具体的具体打. ...

  2. 【COGS 1873】 [国家集训队2011]happiness(吴确) 最小割

    这是一种最小割模型,就是对称三角,中间双向边,我们必须满足其最小割就是满足题目条件的互斥关系的最小舍弃,在这道题里面我们S表示文T表示理,中间一排点是每个人,每个人向两边连其选文或者选理的价值,中间每 ...

  3. codeforces 1060 A

    https://codeforces.com/contest/1060/problem/A 题意:电话号码是以8开头的11位数,给你n 个数问最多可以有多少个电话号码 题解:min(8的个数,n/11 ...

  4. mybatis的注解功能

    一.mybatis 简单注解 关键注解词 : @Insert : 插入sql , 和xml insert sql语法完全一样 @Select : 查询sql, 和xml select sql语法完全一 ...

  5. egrep对于conf文件中去掉#注释,排除无用项

    [root@localhost conf]# egrep -v "#|^$" nginx.conf.default > nginx.conf dd

  6. 转:Mybatis系列之集合映射

    转:Mybatis系列之集合映射 上篇文章我们讲了关联映射,实现了销售与登录用户之间的关联.本文我们接着来讲一讲集合映射,实现销售与客户的多对多关系. 实现销售与客户多对多关系 本文中仍延用<M ...

  7. java JDK动态代理的机制

    一:前言 自己在稳固spring的一些特性的时候在网上看到了遮掩的一句话“利用接口的方式,spring aop将默认通过JDK的动态代理来实现代理类,不适用接口时spring aop将使用通过cgli ...

  8. PCIe 中的Capability 结构的寻址

    PCI-X 和PCIe 总线规范要求其设备必须支持Capabilities 结构.在PCI 总线的基本配置空间中,包含一个Capabilities Pointer 寄存器,该寄存器存放Capabili ...

  9. Codeforces Round #301 解题报告

    感觉这次的题目顺序很不合理啊... A. Combination Lock   Scrooge McDuck keeps his most treasured savings in a home sa ...

  10. 关于UML

    http://www.cnblogs.com/zfc2201/archive/2011/08/16/2141433.html