Division Game

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 0    Accepted Submission(s): 0

Problem Description
There are k

piles of stones in a circle, numbered from 0

to k−1

, where the number of the stones in each pile is n

initially. You can do some round operations, where the initial round is numbered as the 1

-st round.

The operation of the i

-th round is to modify the pile of stones numbered (i−1)modk

. In each round, you should remove from this pile some stones (at least one stone), satisfying that the number of stones in this pile before this operation is a multiple of the number of stones in this pile after operation, which means that you ought to remain at least one stone in this pile.

The game is ended if there exists at least one pile containing only one stone. Given two positive integers n

and k

, your task is to calculate for each pile the number of the possible operation plans that it is the last operated pile before the game is ended.

The integer n

may be very large, so the prime-factor decomposition of n

will be given, in other words, if n=∏mi=1peii

, then the integers m

and (pi,ei)

(1≤i≤m)

will be given, but the integer n

will not.

The answer may be very large, so you only need to give the value of the answer modulo 985661441

.

 
Input
The input contains multiple test cases.

For each test case:

The first line contains two positive integers m

and k

, satisfying that 1≤m,k≤10

.

In next m

lines, the i

-th line contains two positive integers pi

and ei

, satisfying that 2≤pi≤109,

ei≥1,

mi=1ei≤105

.

It is guaranteed that p1,p2,⋯,pm

are distinct.

About 200

test cases in total, where no more than 5

cases satisfy ∑mi=1ei≥104

.

 
Output
For each test case, output "Case #x

: y0

y1

yk−1

" in one line (without quotes), where x

indicates the case number starting from 1

and yi

(0≤i<k)

denotes the number of the possible operation plans modulo 985661441

for the pile numbered i

of corresponding case.

 
Sample Input
1 1
2 2
2 1
3 1
5 1
1 2
2 3
2 2
2 4
5 4
 
Sample Output
Case #1: 2
Case #2: 3
Case #3: 6 4
Case #4: 1499980 1281085

HDU 多校1.4的更多相关文章

  1. 2018 HDU多校第四场赛后补题

    2018 HDU多校第四场赛后补题 自己学校出的毒瘤场..吃枣药丸 hdu中的题号是6332 - 6343. K. Expression in Memories 题意: 判断一个简化版的算术表达式是否 ...

  2. 2018 HDU多校第三场赛后补题

    2018 HDU多校第三场赛后补题 从易到难来写吧,其中题意有些直接摘了Claris的,数据范围是就不标了. 如果需要可以去hdu题库里找.题号是6319 - 6331. L. Visual Cube ...

  3. 2015 HDU 多校联赛 5363 Key Set

    2015 HDU 多校联赛 5363 Key Set 题目: http://acm.hdu.edu.cn/showproblem.php? pid=5363 依据前面给出的样例,得出求解公式 fn = ...

  4. 2015 HDU 多校联赛 5317 RGCDQ 筛法求解

    2015 HDU 多校联赛 5317 RGCDQ 筛法求解 题目  http://acm.hdu.edu.cn/showproblem.php? pid=5317 本题的数据量非常大,測试样例多.数据 ...

  5. [HDU多校]Ridiculous Netizens

    [HDU多校]Ridiculous Netizens 点分治 分成两个部分:对某一点P,连通块经过P或不经过P. 经过P采用树形依赖背包 不经过P的部分递归计算 树型依赖背包 v点必须由其父亲u点转移 ...

  6. 【杂题总汇】HDU多校赛第十场 Videos

    [HDU2018多校赛第十场]Videos 最后一场比赛也结束了…… +HDU传送门+ ◇ 题目 <简要翻译> 有n个人以及m部电影,每个人都有一个快乐值.每场电影都有它的开始.结束时间和 ...

  7. hdu多校1002 Balanced Sequence

    Balanced Sequence Time Limit: / MS (Java/Others) Memory Limit: / K (Java/Others) Total Submission(s) ...

  8. HDU多校(Distinct Values)

    Problem Description Chiaki has an array of n positive integers. You are told some facts about the ar ...

  9. hdu多校6

    这个场要恶心死我了.. 1001 积分题,不要四舍五入 //#pragma comment(linker, "/stack:200000000") //#pragma GCC op ...

  10. hdu 多校第一场

    1001 思路:打表可以发现只有3|n 和 4|n 的情况有解,判一下就好啦. #include<bits/stdc++.h> #define LL long long #define f ...

随机推荐

  1. 【COGS 1534】 [NEERC 2004]K小数 &&【COGS 930】 [河南省队2012] 找第k小的数 可持久化01Trie

    板子题,只是记得负数加fix最方便 #include <cstdio> ,N=; namespace FIFO { <<],*S=B,*T=B; #define getc() ...

  2. dhcp 和ntpdate时间同步

    为了防止路由器的dhcp服务干扰实验,我们2台机器分别新加了1快网卡. vmnet4 dhcp安装 [root@ygy130 ~]# yum -y install dhcp 将配置文件放在/etc/d ...

  3. taotao购物车2 解决购物车本地cookie和服务器redis不同步的问题

    下面的思路逻辑一定要理清楚,比较绕 思路; 前面已经实现了在cookie本地维护购物车的功能, 这次加入和服务器同步功能, 因为 购物车 操作比较频繁,所以,后台服务器 用redis存储用户的购物车信 ...

  4. taotao用户登录(及登录成功后的回调url处理)

    后台Controller: package com.taotao.sso.controller; import org.springframework.stereotype.Controller; i ...

  5. URAL1277 Cops and Thieves(最小割)

    Cops and Thieves Description: The Galaxy Police (Galaxpol) found out that a notorious gang of thieve ...

  6. 旋转数组 [ LeetCode ]

    原题地址:https://leetcode-cn.com/problems/rotate-array/description/ 给定一个数组,将数组中的元素向右移动 k 个位置,其中 k 是非负数. ...

  7. vivo面试学习3(git和svn的区别)

    git和svn有什么区别? svn: 系统特点: 1).集中式版本控制系统(存在一个中央版本库,所有开发人员所使用的代码都是来源于版本库,提交代码也是这个中央版本库) 2).企业内部并行集中开发 3) ...

  8. [bzoj3524==bzoj2223][Poi2014]Couriers/[Coci 2009]PATULJCI——主席树+权值线段树

    题目大意 给定一个大小为n,每个数的大小均在[1,c]之间的数列,你需要回答m个询问,其中第i个询问形如\((l_i, r_i)\),你需要回答是否存在一个数使得它在区间\([l_i,r_i]\)中出 ...

  9. C# 文件类的操作---获取

    如何获取指定目录包含的文件和子目录 . DirectoryInfo.GetFiles():获取目录中(不包含子目录)的文件,返回类型为FileInfo[],支持通配符查找: . DirectoryIn ...

  10. C++11 自动释放锁(转)

    原文转自 https://blog.csdn.net/lmb1612977696/article/details/77712170 c++11加入了很多新的特性,值得我们去探索. 先看一个例子:普通的 ...