计蒜客 30990.An Olympian Math Problem-数学公式题 (ACM-ICPC 2018 南京赛区网络预赛 A)
- 54.28%
- 1000ms
- 65536K
Alice, a student of grade 66, is thinking about an Olympian Math problem, but she feels so despair that she cries. And her classmate, Bob, has no idea about the problem. Thus he wants you to help him. The problem is:
We denote k!k!:
k! = 1 \times 2 \times \cdots \times (k - 1) \times kk!=1×2×⋯×(k−1)×k
We denote SS:
S = 1 \times 1! + 2 \times 2! + \cdots +S=1×1!+2×2!+⋯+
(n - 1) \times (n-1)!(n−1)×(n−1)!
Then SS module nn is ____________
You are given an integer nn.
You have to calculate SS modulo nn.
Input
The first line contains an integer T(T \le 1000)T(T≤1000), denoting the number of test cases.
For each test case, there is a line which has an integer nn.
It is guaranteed that 2 \le n\le 10^{18}2≤n≤1018.
Output
For each test case, print an integer SS modulo nn.
Hint
The first test is: S = 1\times 1!= 1S=1×1!=1, and 11 modulo 22 is 11.
The second test is: S = 1\times 1!+2 \times 2!= 5S=1×1!+2×2!=5 , and 55 modulo 33 is 22.
样例输入复制
2
2
3
样例输出复制
1
2
题目来源
题意很好理解。
直接代码
代码:
//A-数学公式
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<bitset>
#include<cassert>
#include<cctype>
#include<cmath>
#include<cstdlib>
#include<ctime>
#include<deque>
#include<iomanip>
#include<list>
#include<map>
#include<queue>
#include<set>
#include<stack>
#include<vector>
using namespace std;
typedef long long ll; const double PI=acos(-1.0);
const double eps=1e-;
const ll mod=1e9+;
const int inf=0x3f3f3f3f;
const int maxn=1e5+;
const int maxm=+;
#define ios ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
//公式为1*1!+2*2!+3*3!+...+n*n!=(n+1)!-1,本题为(n!-1)%n
//因为n!-1=(n-1)*n-1=(n-2)*n+n-1,所以[(n-2)*n+(n-1)]%n=n-1
//因n*n!=(n+1-1)n!=(n+1)n!-n!=(n+1)!-n!
//所以:1*1!=2!-1!
//2*2!=3!-2!
//3*3!=4!-3!
//.
//n*n!=(n+1)!-n!
//相加后有:1*1!+2*2!+3*3!+.+n*n!=(n+1)!-1
//1*1!+2*2!+3*3!+.+n*n!=(n+1)!-1
//把最后一项拆开来,变成(n+1-1)n!=(n+1)n!-n! int main()
{
int t;
cin>>t;
while(t--){
ll n;
cin>>n;
cout<<n-<<endl;
}
}
溜了,一会贴一下线段树的题目。
计蒜客 30990.An Olympian Math Problem-数学公式题 (ACM-ICPC 2018 南京赛区网络预赛 A)的更多相关文章
- 计蒜客 30990 - An Olympian Math Problem - [简单数学题][2018ICPC南京网络预赛A题]
题目链接:https://nanti.jisuanke.com/t/30990 Alice, a student of grade 6, is thinking about an Olympian M ...
- 计蒜客 30999.Sum-筛无平方因数的数 (ACM-ICPC 2018 南京赛区网络预赛 J)
J. Sum 26.87% 1000ms 512000K A square-free integer is an integer which is indivisible by any squar ...
- 计蒜客 30996.Lpl and Energy-saving Lamps-线段树(区间满足条件最靠左的值) (ACM-ICPC 2018 南京赛区网络预赛 G)
G. Lpl and Energy-saving Lamps 42.07% 1000ms 65536K During tea-drinking, princess, amongst other t ...
- 【ACM-ICPC 2018 南京赛区网络预赛 A】An Olympian Math Problem
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 估计试几个就会发现答案总是n-1吧. 队友给的证明 [代码] #include <bits/stdc++.h> #def ...
- 计蒜客 1460.Ryuji doesn't want to study-树状数组 or 线段树 (ACM-ICPC 2018 徐州赛区网络预赛 H)
H.Ryuji doesn't want to study 27.34% 1000ms 262144K Ryuji is not a good student, and he doesn't wa ...
- 计蒜客 25985.Goldbach-米勒拉宾素数判定(大素数) (2018 ACM-ICPC 中国大学生程序设计竞赛线上赛 B)
若干年之前的一道题,当时能写出来还是超级开心的,虽然是个板子题.一直忘记写博客,备忘一下. 米勒拉判大素数,关于米勒拉宾是个什么东西,传送门了解一下:biubiubiu~ B. Goldbach 题目 ...
- 【计蒜客】是男人就过 8 题--Pony.AI 题 A. A String Game 后缀自动机+SG函数
[题目]A. A String Game [题意]给定目标串S和n个子串Ti,Alice和Bob轮流选择一个子串操作,必须且只能在子串末尾添加一个字符使得新串也是S的子串,不能操作即输,求胜利者.|S ...
- 计蒜客 31458.Features Track-滚动数组+STL(map)连续计数 (ACM-ICPC 2018 徐州赛区网络预赛 F)
F. Features Track Morgana is learning computer vision, and he likes cats, too. One day he wants to f ...
- 线段树+lazy标记 2019年8月10日计蒜客联盟周赛 C.小A的题
题目链接:https://nanti.jisuanke.com/t/40852 题意:给定一个01串s,进行m次操作,|s|<=1e6,m<=5e5 操作有两种 l r 0,区间[l,r] ...
随机推荐
- [BZOJ1449] [JSOI2009]球队收益 / [BZOJ2895] 球队预算
Description 在一个篮球联赛里,有n支球队,球队的支出是和他们的胜负场次有关系的,具体来说,第i支球队的赛季总支出是Cix^2+Diy^2,Di<=Ci.(赢得多,给球员的奖金就多嘛) ...
- MFC 相关类、函数
timeSetEvent()函数 CRectTracker类的使用 SetLocalTime设置本地时间 AdjustTokenPrivileges启用权限
- 安徽师大附中%你赛day9 T3 贵 解题报告
贵 问题描述 苟先生的狼狗大军没有追上富先生, 所以他把它们都解雇了, 决定去雇佣一些更好的狗, 不过狗可是很贵的.苟先生有 \(w\) 元钱, 有 \(n\) 条狗可以雇佣, 第 \(i\) 条狗有 ...
- table表头固定问题
table表头固定问题 原生的table表头在表格滚动时候无法固定,可以使用以下的方法进行模拟 1. 双table法 表头和表体各用一个table,这样会产生表格列对不齐的问题,可以使用colgrou ...
- ionic运行测试
http://blog.csdn.net/yucihan/article/details/54631747
- centos7上安装docker-ce社区版
报错:Error: docker-ce-selinux conflicts with 2:container-selinux-2.12-2.gite7096ce.el7.noarch 转载:http: ...
- IOS 学习资料整理{非常有用,强烈推荐}
绝地地的资源博客:我是雷锋不用谢~~啦啦啦 https://blog.csdn.net/kunga0814/article/details/82117090
- All in One到”分布式“迁移过程中的坑
为什么“分布式”要加引号? 与其他公司提高并发性能的场景可能不太一样,我们的系统之前是多个模块共用一个tomcat来运行的(All in One),模块有很多,光安装包就几十个.当某个模块或某几个模块 ...
- GML3示例
GML3示例:https://svn.osgeo.org/geotools/trunk/modules/extension/xsd/xsd-gml3/src/test/resources/org/ge ...
- bzoj 5010: [Fjoi2017]矩阵填数
Description 给定一个 h*w 的矩阵,矩阵的行编号从上到下依次为 1..h,列编号从左到右依次1..w.在这个矩阵中你需要在每 个格子中填入 1..m 中的某个数.给这个矩阵填数的时候有一 ...