Flume自定义拦截器(Interceptors)或自带拦截器时的一些经验技巧总结(图文详解)
不多说,直接上干货!
一、自定义拦截器类型必须是:类全名$内部类名,其实就是内部类名称
如:zhouls.bigdata.MySearchAndReplaceInterceptor$Builder
二、为什么这样写
至于为什么这样写:是因为Interceptor接口还有一个 公共的内部接口(Builder) ,所以自定义拦截器 要是实现 Builder接口,
也就是实现一个内部类(该内部类的主要作用是:获取flume-conf.properties 自定义的 参数,并将参数传递给 自定义拦截器)
三、
本人知识有限,可能描述的不太清楚,可自行了解 java接口与内部类
由于有时候内置的拦截器不够用,所以需要针对特殊的业务需求自定义拦截器。
官方文档中没有发现自定义interceptor的步骤,但是可以根据flume源码参考内置的拦截器的代码
flume-1.7/flume-ng-core/src/main/java/org/apache/flume/interceptor/***Iterceptor.java
无论,是flume的自带拦截器,还是,flume的自定义拦截器,我这篇博文呢,是想给大家,去规范和方便化!!!
- [hadoop@master app]$ rm -rf flume
- [hadoop@master app]$ ln -s flume-1.7./ flume
- [hadoop@master app]$ ll
- lrwxrwxrwx hadoop hadoop Jul : flume -> flume-1.7./
- drwxrwxr-x hadoop hadoop Apr : flume-1.6.
- drwxrwxr-x hadoop hadoop Apr : flume-1.7.
Host Interceptor的应用场景是,将同一主机或服务器上的数据flume在一起。
Regex Extractor Iterceptor的应用场景是,
这里,教大家一个非常实用的技巧,

- [hadoop@master flume-1.7.0]$ pwd
- /home/hadoop/app/flume-1.7.0
- [hadoop@master flume-1.7.0]$ ll
- total 148
- drwxr-xr-x 2 hadoop hadoop 4096 Apr 20 12:00 bin
- -rw-r--r-- 1 hadoop hadoop 77387 Oct 11 2016 CHANGELOG
- drwxr-xr-x 2 hadoop hadoop 4096 Apr 20 12:00 conf
- -rw-r--r-- 1 hadoop hadoop 6172 Sep 26 2016 DEVNOTES
- -rw-r--r-- 1 hadoop hadoop 2873 Sep 26 2016 doap_Flume.rdf
- drwxr-xr-x 10 hadoop hadoop 4096 Oct 13 2016 docs
- drwxrwxr-x 2 hadoop hadoop 4096 Apr 20 12:00 lib
- -rw-r--r-- 1 hadoop hadoop 27625 Oct 13 2016 LICENSE
- -rw-r--r-- 1 hadoop hadoop 249 Sep 26 2016 NOTICE
- -rw-r--r-- 1 hadoop hadoop 2520 Sep 26 2016 README.md
- -rw-r--r-- 1 hadoop hadoop 1585 Oct 11 2016 RELEASE-NOTES
- drwxrwxr-x 2 hadoop hadoop 4096 Apr 20 12:00 tools
- [hadoop@master flume-1.7.0]$ cp -r conf conf_HostInterceptor
- [hadoop@master flume-1.7.0]$ ll
- total 152
- drwxr-xr-x 2 hadoop hadoop 4096 Apr 20 12:00 bin
- -rw-r--r-- 1 hadoop hadoop 77387 Oct 11 2016 CHANGELOG
- drwxr-xr-x 2 hadoop hadoop 4096 Apr 20 12:00 conf
- drwxr-xr-x 2 hadoop hadoop 4096 Jul 27 11:59 conf_HostInterceptor
- -rw-r--r-- 1 hadoop hadoop 6172 Sep 26 2016 DEVNOTES
- -rw-r--r-- 1 hadoop hadoop 2873 Sep 26 2016 doap_Flume.rdf
- drwxr-xr-x 10 hadoop hadoop 4096 Oct 13 2016 docs
- drwxrwxr-x 2 hadoop hadoop 4096 Apr 20 12:00 lib
- -rw-r--r-- 1 hadoop hadoop 27625 Oct 13 2016 LICENSE
- -rw-r--r-- 1 hadoop hadoop 249 Sep 26 2016 NOTICE
- -rw-r--r-- 1 hadoop hadoop 2520 Sep 26 2016 README.md
- -rw-r--r-- 1 hadoop hadoop 1585 Oct 11 2016 RELEASE-NOTES
- drwxrwxr-x 2 hadoop hadoop 4096 Apr 20 12:00 tools
- [hadoop@master flume-1.7.0]$

- [hadoop@master flume-1.7.0]$ ll
- total 152
- drwxr-xr-x 2 hadoop hadoop 4096 Apr 20 12:00 bin
- -rw-r--r-- 1 hadoop hadoop 77387 Oct 11 2016 CHANGELOG
- drwxr-xr-x 2 hadoop hadoop 4096 Apr 20 12:00 conf
- drwxr-xr-x 2 hadoop hadoop 4096 Jul 27 12:01 conf_HostInterceptor
- -rw-r--r-- 1 hadoop hadoop 6172 Sep 26 2016 DEVNOTES
- -rw-r--r-- 1 hadoop hadoop 2873 Sep 26 2016 doap_Flume.rdf
- drwxr-xr-x 10 hadoop hadoop 4096 Oct 13 2016 docs
- drwxrwxr-x 2 hadoop hadoop 4096 Apr 20 12:00 lib
- -rw-r--r-- 1 hadoop hadoop 27625 Oct 13 2016 LICENSE
- -rw-r--r-- 1 hadoop hadoop 249 Sep 26 2016 NOTICE
- -rw-r--r-- 1 hadoop hadoop 2520 Sep 26 2016 README.md
- -rw-r--r-- 1 hadoop hadoop 1585 Oct 11 2016 RELEASE-NOTES
- drwxrwxr-x 2 hadoop hadoop 4096 Apr 20 12:00 tools
- [hadoop@master flume-1.7.0]$ cp -r conf conf_RegexExtractorInterceptor
- [hadoop@master flume-1.7.0]$ ll
- total 156
- drwxr-xr-x 2 hadoop hadoop 4096 Apr 20 12:00 bin
- -rw-r--r-- 1 hadoop hadoop 77387 Oct 11 2016 CHANGELOG
- drwxr-xr-x 2 hadoop hadoop 4096 Apr 20 12:00 conf
- drwxr-xr-x 2 hadoop hadoop 4096 Jul 27 12:01 conf_HostInterceptor
- drwxr-xr-x 2 hadoop hadoop 4096 Jul 27 12:03 conf_RegexExtractorInterceptor
- -rw-r--r-- 1 hadoop hadoop 6172 Sep 26 2016 DEVNOTES
- -rw-r--r-- 1 hadoop hadoop 2873 Sep 26 2016 doap_Flume.rdf
- drwxr-xr-x 10 hadoop hadoop 4096 Oct 13 2016 docs
- drwxrwxr-x 2 hadoop hadoop 4096 Apr 20 12:00 lib
- -rw-r--r-- 1 hadoop hadoop 27625 Oct 13 2016 LICENSE
- -rw-r--r-- 1 hadoop hadoop 249 Sep 26 2016 NOTICE
- -rw-r--r-- 1 hadoop hadoop 2520 Sep 26 2016 README.md
- -rw-r--r-- 1 hadoop hadoop 1585 Oct 11 2016 RELEASE-NOTES
- drwxrwxr-x 2 hadoop hadoop 4096 Apr 20 12:00 tools
- [hadoop@master flume-1.7.0]$


- drwxr-xr-x 2 hadoop hadoop 4096 Apr 20 12:00 bin
- -rw-r--r-- 1 hadoop hadoop 77387 Oct 11 2016 CHANGELOG
- drwxr-xr-x 2 hadoop hadoop 4096 Apr 20 12:00 conf
- drwxr-xr-x 2 hadoop hadoop 4096 Jul 27 12:01 conf_HostInterceptor
- drwxr-xr-x 2 hadoop hadoop 4096 Jul 27 12:03 conf_RegexExtractorInterceptor
- -rw-r--r-- 1 hadoop hadoop 6172 Sep 26 2016 DEVNOTES
- -rw-r--r-- 1 hadoop hadoop 2873 Sep 26 2016 doap_Flume.rdf
- drwxr-xr-x 10 hadoop hadoop 4096 Oct 13 2016 docs
- drwxrwxr-x 2 hadoop hadoop 4096 Apr 20 12:00 lib
- -rw-r--r-- 1 hadoop hadoop 27625 Oct 13 2016 LICENSE
- -rw-r--r-- 1 hadoop hadoop 249 Sep 26 2016 NOTICE
- -rw-r--r-- 1 hadoop hadoop 2520 Sep 26 2016 README.md
- -rw-r--r-- 1 hadoop hadoop 1585 Oct 11 2016 RELEASE-NOTES
- drwxrwxr-x 2 hadoop hadoop 4096 Apr 20 12:00 tools
- [hadoop@master flume-1.7.0]$ cp -r conf conf_SearchandReplaceInterceptor
- [hadoop@master flume-1.7.0]$ ll
- total 160
- drwxr-xr-x 2 hadoop hadoop 4096 Apr 20 12:00 bin
- -rw-r--r-- 1 hadoop hadoop 77387 Oct 11 2016 CHANGELOG
- drwxr-xr-x 2 hadoop hadoop 4096 Apr 20 12:00 conf
- drwxr-xr-x 2 hadoop hadoop 4096 Jul 27 12:01 conf_HostInterceptor
- drwxr-xr-x 2 hadoop hadoop 4096 Jul 27 12:03 conf_RegexExtractorInterceptor
- drwxr-xr-x 2 hadoop hadoop 4096 Jul 27 12:04 conf_SearchandReplaceInterceptor
- -rw-r--r-- 1 hadoop hadoop 6172 Sep 26 2016 DEVNOTES
- -rw-r--r-- 1 hadoop hadoop 2873 Sep 26 2016 doap_Flume.rdf
- drwxr-xr-x 10 hadoop hadoop 4096 Oct 13 2016 docs
- drwxrwxr-x 2 hadoop hadoop 4096 Apr 20 12:00 lib
- -rw-r--r-- 1 hadoop hadoop 27625 Oct 13 2016 LICENSE
- -rw-r--r-- 1 hadoop hadoop 249 Sep 26 2016 NOTICE
- -rw-r--r-- 1 hadoop hadoop 2520 Sep 26 2016 README.md
- -rw-r--r-- 1 hadoop hadoop 1585 Oct 11 2016 RELEASE-NOTES
- drwxrwxr-x 2 hadoop hadoop 4096 Apr 20 12:00 tools
- [hadoop@master flume-1.7.0]$
大家,想必,很想问,为什么要这么cp复制出来呢?如flume的以下3种重要的自带拦截器???
- cp -r conf conf_HostInterceptor
- cp -r conf conf_SearchandReplaceInterceptor
- cp -r conf conf_RegexExtractorInterceptor
你想啊,若不复制的话,则我们在使用时,则会不方便管理。尤其是,见如下,共用同一个log4j.properties,日志排查起来一点都不方便!!!
而,现在是
这样做下来,就是非常的方便和正规。
同时,大家,还要如下更改下
- [hadoop@master conf_HostInterceptor]$ pwd
- /home/hadoop/app/flume-1.7./conf_HostInterceptor
- [hadoop@master conf_HostInterceptor]$ ll
- total
- -rw-r--r-- hadoop hadoop Jul : flume-conf.properties.template
- -rw-r--r-- hadoop hadoop Jul : flume-env.ps1.template
- -rw-r--r-- hadoop hadoop Jul : flume-env.sh.template
- -rw-r--r-- hadoop hadoop Jul : log4j.properties
- [hadoop@master conf_HostInterceptor]$ mv flume-conf.properties.template flume-conf.properties
- [hadoop@master conf_HostInterceptor]$ vim log4j.properties
- #flume.root.logger=DEBUG,console
- flume.root.logger=INFO,LOGFILE
- flume.log.dir=./logs
- flume.log.file=flume_HostInterceptor.log
同理
- [hadoop@master conf_RegexExtractorInterceptor]$ pwd
- /home/hadoop/app/flume-1.7./conf_RegexExtractorInterceptor
- [hadoop@master conf_RegexExtractorInterceptor]$ ll
- total
- -rw-r--r-- hadoop hadoop Jul : flume-conf.properties.template
- -rw-r--r-- hadoop hadoop Jul : flume-env.ps1.template
- -rw-r--r-- hadoop hadoop Jul : flume-env.sh.template
- -rw-r--r-- hadoop hadoop Jul : log4j.properties
- [hadoop@master conf_RegexExtractorInterceptor]$ mv flume-conf.properties.template flume-conf.properties
- [hadoop@master conf_RegexExtractorInterceptor]$ vim log4j.properties
- #flume.root.logger=DEBUG,console
- flume.root.logger=INFO,LOGFILE
- flume.log.dir=./logs
- flume.log.file=flume_RegexExtractorInterceptor.log
同理
- [hadoop@master conf_SearchandReplaceInterceptor]$ pwd
- /home/hadoop/app/flume-1.7./conf_SearchandReplaceInterceptor
- [hadoop@master conf_SearchandReplaceInterceptor]$ ll
- total
- -rw-r--r-- hadoop hadoop Jul : flume-conf.properties.template
- -rw-r--r-- hadoop hadoop Jul : flume-env.ps1.template
- -rw-r--r-- hadoop hadoop Jul : flume-env.sh.template
- -rw-r--r-- hadoop hadoop Jul : log4j.properties
- [hadoop@master conf_SearchandReplaceInterceptor]$ mv flume-conf.properties.template flume-conf.properties
- [hadoop@master conf_SearchandReplaceInterceptor]$ vim log4j.properties
- #flume.root.logger=DEBUG,console
- flume.root.logger=INFO,LOGFILE
- flume.log.dir=./logs
- flume.log.file=flume_SearchandReplaceInterceptor.log
Host Interceptor
conf_HostInterceptor的flume-conf.properties
- agent1.sources = r1
- agent1.sinks = k1
- agent1.channels = c1
- # Describe/configure the source
- agent1.sources.r1.type = netcat
- agent1.sources.r1.bind = localhost
- agent1.sources.r1.port =
- agent1.sources.r1.interceptors = i1
- agent1.sources.r1.interceptors.i1.type = host
- agent1.sources.r1.interceptors.i1.hostHeader = hostname
- # Use a channel which buffers events in memory
- agent1.channels.c1.type = memory
- agent1.channels.c1.capacity =
- agent1.channels.c1.transactionCapacity =
- # Bind the source and sink to the channel
- agent1.sources.r1.channels = c1
- agent1.sinks.k1.channel = c1
- # Describe the sink
- agent1.sinks.k1.type = logger
则,注意,启动命令也要发生变化
- [hadoop@master flume-1.7.0]$ bin/flume-ng agent --conf conf_HostInterceptor/ --conf-file conf_HostInterceptor/flume-conf.properties --name agent1 -Dflume.root.logger=INFO,console
- SLF4J: Found binding in [jar:file:/home/hadoop/app/hbase-0.98.19/lib/slf4j-log4j12-1.6.4.jar!/org/slf4j/impl/StaticLoggerBinder.class]
- SLF4J: Found binding in [jar:file:/home/hadoop/app/hive-1.0.0/lib/hive-jdbc-1.0.0-standalone.jar!/org/slf4j/impl/StaticLoggerBinder.class]
- SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
- 2017-07-27 12:41:49,451 (lifecycleSupervisor-1-0) [INFO - org.apache.flume.node.PollingPropertiesFileConfigurationProvider.start(PollingPropertiesFileConfigurationProvider.java:62)] Configuration provider starting
- 2017-07-27 12:41:50,137 (conf-file-poller-0) [INFO - org.apache.flume.node.PollingPropertiesFileConfigurationProvider$FileWatcherRunnable.run(PollingPropertiesFileConfigurationProvider.java:134)] Reloading configuration file:conf_HostInterceptor/flume-conf.properties
- 2017-07-27 12:41:50,188 (conf-file-poller-0) [INFO - org.apache.flume.conf.FlumeConfiguration$AgentConfiguration.addProperty(FlumeConfiguration.java:1016)] Processing:k1
- 2017-07-27 12:41:50,189 (conf-file-poller-0) [INFO - org.apache.flume.conf.FlumeConfiguration$AgentConfiguration.addProperty(FlumeConfiguration.java:1016)] Processing:k1
- 2017-07-27 12:41:50,189 (conf-file-poller-0) [INFO - org.apache.flume.conf.FlumeConfiguration$AgentConfiguration.addProperty(FlumeConfiguration.java:930)] Added sinks: k1 Agent: agent1
- 2017-07-27 12:41:50,280 (conf-file-poller-0) [INFO - org.apache.flume.conf.FlumeConfiguration.validateConfiguration(FlumeConfiguration.java:140)] Post-validation flume configuration contains configuration for agents: [agent1]
- 2017-07-27 12:41:50,280 (conf-file-poller-0) [INFO - org.apache.flume.node.AbstractConfigurationProvider.loadChannels(AbstractConfigurationProvider.java:147)] Creating channels
- 2017-07-27 12:41:50,337 (conf-file-poller-0) [INFO - org.apache.flume.channel.DefaultChannelFactory.create(DefaultChannelFactory.java:42)] Creating instance of channel c1 type memory
- 2017-07-27 12:41:50,423 (conf-file-poller-0) [INFO - org.apache.flume.node.AbstractConfigurationProvider.loadChannels(AbstractConfigurationProvider.java:201)] Created channel c1
- 2017-07-27 12:41:50,425 (conf-file-poller-0) [INFO - org.apache.flume.source.DefaultSourceFactory.create(DefaultSourceFactory.java:41)] Creating instance of source r1, type netcat
- 2017-07-27 12:41:51,478 (conf-file-poller-0) [INFO - org.apache.flume.sink.DefaultSinkFactory.create(DefaultSinkFactory.java:42)] Creating instance of sink: k1, type: logger
- 2017-07-27 12:41:51,490 (conf-file-poller-0) [INFO - org.apache.flume.node.AbstractConfigurationProvider.getConfiguration(AbstractConfigurationProvider.java:116)] Channel c1 connected to [r1, k1]
- 2017-07-27 12:41:52,050 (conf-file-poller-0) [INFO - org.apache.flume.node.Application.startAllComponents(Application.java:137)] Starting new configuration:{ sourceRunners:{r1=EventDrivenSourceRunner: { source:org.apache.flume.source.NetcatSource{name:r1,state:IDLE} }} sinkRunners:{k1=SinkRunner: { policy:org.apache.flume.sink.DefaultSinkProcessor@13f948e counterGroup:{ name:null counters:{} } }} channels:{c1=org.apache.flume.channel.MemoryChannel{name: c1}} }
- 2017-07-27 12:41:52,052 (conf-file-poller-0) [INFO - org.apache.flume.node.Application.startAllComponents(Application.java:144)] Starting Channel c1
- 2017-07-27 12:41:53,484 (lifecycleSupervisor-1-0) [INFO - org.apache.flume.instrumentation.MonitoredCounterGroup.register(MonitoredCounterGroup.java:119)] Monitored counter group for type: CHANNEL, name: c1: Successfully registered new MBean.
- 2017-07-27 12:41:53,517 (lifecycleSupervisor-1-0) [INFO - org.apache.flume.instrumentation.MonitoredCounterGroup.start(MonitoredCounterGroup.java:95)] Component type: CHANNEL, name: c1 started
- 2017-07-27 12:41:53,522 (conf-file-poller-0) [INFO - org.apache.flume.node.Application.startAllComponents(Application.java:171)] Starting Sink k1
- 2017-07-27 12:41:53,524 (conf-file-poller-0) [INFO - org.apache.flume.node.Application.startAllComponents(Application.java:182)] Starting Source r1
- 2017-07-27 12:41:53,531 (lifecycleSupervisor-1-3) [INFO - org.apache.flume.source.NetcatSource.start(NetcatSource.java:155)] Source starting
- 2017-07-27 12:41:54,384 (lifecycleSupervisor-1-3) [INFO - org.apache.flume.source.NetcatSource.start(NetcatSource.java:169)] Created serverSocket:sun.nio.ch.ServerSocketChannelImpl[/127.0.0.1:44444]
等待数据的采集
- [hadoop@master ~]$ yum -y install telnet
- Loaded plugins: fastestmirror, refresh-packagekit, security
- You need to be root to perform this command.
- [hadoop@master ~]$ su root
- Password:
- [root@master hadoop]# yum -y install telnet
- Loaded plugins: fastestmirror, refresh-packagekit, security
- Loading mirror speeds from cached hostfile
- * base: mirrors.cqu.edu.cn
- * extras: mirrors.sohu.com
成功地,然后,这边随便输入什么。比如hello
- [root@master ~]# telnet localhost 44444
- Trying ::1...
- telnet: connect to address ::1: Connection refused
- Trying 127.0.0.1...
- Connected to localhost.
- Escape character is '^]'.
- hello
- OK
- Event: { headers:{hostname=192.168.80.145} body: 68 65 6C 6C 6F 0D hello. }
这就是Host Interceptor的作用体现!
- agent1.sources.r1.interceptors = i1
- agent1.sources.r1.interceptors.i1.type = host
- agent1.sources.r1.interceptors.i1.hostHeader = hostname
若想要如下的效果,则
- Event: { headers:{hostname=master} body: 7A 68 6F 75 6C 73 0D zhouls. }
则
- agent1.sources = r1
- agent1.sinks = k1
- agent1.channels = c1
- # Describe/configure the source
- agent1.sources.r1.type = netcat
- agent1.sources.r1.bind = localhost
- agent1.sources.r1.port =
- agent1.sources.r1.interceptors = i1
- agent1.sources.r1.interceptors.i1.type = host
- agent1.sources.r1.interceptors.i1.useIP = false
- agent1.sources.r1.interceptors.i1.hostHeader = hostname
- # Use a channel which buffers events in memory
- agent1.channels.c1.type = memory
- agent1.channels.c1.capacity =
- agent1.channels.c1.transactionCapacity =
- # Bind the source and sink to the channel
- agent1.sources.r1.channels = c1
- agent1.sinks.k1.channel = c1
- # Describe the sink
- agent1.sinks.k1.type = logger
- [hadoop@master flume-1.7.]$ bin/flume-ng agent --conf conf_HostInterceptor/ --conf-file conf_HostInterceptor/flume-conf.properties --name agent1 -Dflume.root.logger=INFO,console
- [root@master ~]# telnet localhost
- Trying ::...
- telnet: connect to address ::: Connection refused
- Trying 127.0.0.1...
- Connected to localhost.
- Escape character is '^]'.
- zhouls
- OK
- Event: { headers:{hostname=master} body: 7A 68 6F 75 6C 73 0D zhouls. }
Regex Extractor Interceptor(正则抽取拦截器)
conf_RegexExtractorInterceptor的flume-conf.properties
- [hadoop@master conf_RegexExtractorInterceptor]$ pwd
- /home/hadoop/app/flume-1.7./conf_RegexExtractorInterceptor
- [hadoop@master conf_RegexExtractorInterceptor]$ ll
- total
- -rw-r--r-- hadoop hadoop Jul : flume-conf.properties
- -rw-r--r-- hadoop hadoop Jul : flume-env.ps1.template
- -rw-r--r-- hadoop hadoop Jul : flume-env.sh.template
- -rw-r--r-- hadoop hadoop Jul : log4j.properties
- [hadoop@master conf_RegexExtractorInterceptor]$ vim flume-conf.properties
首先,我们来说说这个拦截器的应用场景
假设,有如下的flume测试数据
- video_info
- {"id":"","uid":"","lat":"53.530598","lnt":"-2.5620373","hots":,"title":"","status":"","topicId":"","end_time":"","watch_num":,"share_num":"","replay_url":null,"replay_num":,"start_time":"","timestamp":,"type":"video_info"}
- {"id":"","uid":"","lat":"53.530598","lnt":"-2.5620373","hots":,"title":"","status":"","topicId":"","end_time":"","watch_num":,"share_num":"","replay_url":null,"replay_num":,"start_time":"","timestamp":,"type":"video_info"}
- {"id":"","uid":"","lat":"53.530598","lnt":"-2.5620373","hots":,"title":"","status":"","topicId":"","end_time":"","watch_num":,"share_num":"","replay_url":null,"replay_num":,"start_time":"","timestamp":,"type":"video_info"}
- {"id":"","uid":"","lat":"53.530598","lnt":"-2.5620373","hots":,"title":"","status":"","topicId":"","end_time":"","watch_num":,"share_num":"","replay_url":null,"replay_num":,"start_time":"","timestamp":,"type":"video_info"}
- {"id":"","uid":"","lat":"53.530598","lnt":"-2.5620373","hots":,"title":"","status":"","topicId":"","end_time":"","watch_num":,"share_num":"","replay_url":null,"replay_num":,"start_time":"","timestamp":,"type":"video_info"}
- {"id":"","uid":"","lat":"53.530598","lnt":"-2.5620373","hots":,"title":"","status":"","topicId":"","end_time":"","watch_num":,"share_num":"","replay_url":null,"replay_num":,"start_time":"","timestamp":,"type":"video_info"}
- {"id":"","uid":"","lat":"53.530598","lnt":"-2.5620373","hots":,"title":"","status":"","topicId":"","end_time":"","watch_num":,"share_num":"","replay_url":null,"replay_num":,"start_time":"","timestamp":,"type":"video_info"}
- {"id":"","uid":"","lat":"53.530598","lnt":"-2.5620373","hots":,"title":"","status":"","topicId":"","end_time":"","watch_num":,"share_num":"","replay_url":null,"replay_num":,"start_time":"","timestamp":,"type":"video_info"}
- {"id":"","uid":"","lat":"53.530598","lnt":"-2.5620373","hots":,"title":"","status":"","topicId":"","end_time":"","watch_num":,"share_num":"","replay_url":null,"replay_num":,"start_time":"","timestamp":,"type":"video_info"}
- {"id":"","uid":"","lat":"53.530598","lnt":"-2.5620373","hots":,"title":"","status":"","topicId":"","end_time":"","watch_num":,"share_num":"","replay_url":null,"replay_num":,"start_time":"","timestamp":,"type":"video_info"}
- userinfo
- {"uid":"","nickname":"mick","usign":"","sex":,"birthday":"","face":"","big_face":"","email":"abc@qq.com","mobile":"","reg_type":"","last_login_time":"","reg_time":"","last_update_time":"","status":"","is_verified":"","verified_info":"","is_seller":"","level":,"exp":,"anchor_level":,"anchor_exp":,"os":"android","timestamp":,"type":"userinfo"}
- {"uid":"","nickname":"mick","usign":"","sex":,"birthday":"","face":"","big_face":"","email":"abc@qq.com","mobile":"","reg_type":"","last_login_time":"","reg_time":"","last_update_time":"","status":"","is_verified":"","verified_info":"","is_seller":"","level":,"exp":,"anchor_level":,"anchor_exp":,"os":"android","timestamp":,"type":"userinfo"}
- {"uid":"","nickname":"mick","usign":"","sex":,"birthday":"","face":"","big_face":"","email":"abc@qq.com","mobile":"","reg_type":"","last_login_time":"","reg_time":"","last_update_time":"","status":"","is_verified":"","verified_info":"","is_seller":"","level":,"exp":,"anchor_level":,"anchor_exp":,"os":"android","timestamp":,"type":"userinfo"}
- {"uid":"","nickname":"mick","usign":"","sex":,"birthday":"","face":"","big_face":"","email":"abc@qq.com","mobile":"","reg_type":"","last_login_time":"","reg_time":"","last_update_time":"","status":"","is_verified":"","verified_info":"","is_seller":"","level":,"exp":,"anchor_level":,"anchor_exp":,"os":"android","timestamp":,"type":"userinfo"}
- {"uid":"","nickname":"mick","usign":"","sex":,"birthday":"","face":"","big_face":"","email":"abc@qq.com","mobile":"","reg_type":"","last_login_time":"","reg_time":"","last_update_time":"","status":"","is_verified":"","verified_info":"","is_seller":"","level":,"exp":,"anchor_level":,"anchor_exp":,"os":"android","timestamp":,"type":"userinfo"}
- {"uid":"","nickname":"mick","usign":"","sex":,"birthday":"","face":"","big_face":"","email":"abc@qq.com","mobile":"","reg_type":"","last_login_time":"","reg_time":"","last_update_time":"","status":"","is_verified":"","verified_info":"","is_seller":"","level":,"exp":,"anchor_level":,"anchor_exp":,"os":"android","timestamp":,"type":"userinfo"}
- {"uid":"","nickname":"mick","usign":"","sex":,"birthday":"","face":"","big_face":"","email":"abc@qq.com","mobile":"","reg_type":"","last_login_time":"","reg_time":"","last_update_time":"","status":"","is_verified":"","verified_info":"","is_seller":"","level":,"exp":,"anchor_level":,"anchor_exp":,"os":"android","timestamp":,"type":"userinfo"}
- {"uid":"","nickname":"mick","usign":"","sex":,"birthday":"","face":"","big_face":"","email":"abc@qq.com","mobile":"","reg_type":"","last_login_time":"","reg_time":"","last_update_time":"","status":"","is_verified":"","verified_info":"","is_seller":"","level":,"exp":,"anchor_level":,"anchor_exp":,"os":"android","timestamp":,"type":"userinfo"}
- {"uid":"","nickname":"mick","usign":"","sex":,"birthday":"","face":"","big_face":"","email":"abc@qq.com","mobile":"","reg_type":"","last_login_time":"","reg_time":"","last_update_time":"","status":"","is_verified":"","verified_info":"","is_seller":"","level":,"exp":,"anchor_level":,"anchor_exp":,"os":"android","timestamp":,"type":"userinfo"}
- {"uid":"","nickname":"mick","usign":"","sex":,"birthday":"","face":"","big_face":"","email":"abc@qq.com","mobile":"","reg_type":"","last_login_time":"","reg_time":"","last_update_time":"","status":"","is_verified":"","verified_info":"","is_seller":"","level":,"exp":,"anchor_level":,"anchor_exp":,"os":"android","timestamp":,"type":"userinfo"}
- gift_record
- {"send_id":"","good_id":"","video_id":"","gold":"","timestamp":,"type":"gift_record"}
- {"send_id":"","good_id":"","video_id":"","gold":"","timestamp":,"type":"gift_record"}
- {"send_id":"","good_id":"","video_id":"","gold":"","timestamp":,"type":"gift_record"}
- {"send_id":"","good_id":"","video_id":"","gold":"","timestamp":,"type":"gift_record"}
- {"send_id":"","good_id":"","video_id":"","gold":"","timestamp":,"type":"gift_record"}
- {"send_id":"","good_id":"","video_id":"","gold":"","timestamp":,"type":"gift_record"}
- {"send_id":"","good_id":"","video_id":"","gold":"","timestamp":,"type":"gift_record"}
- {"send_id":"","good_id":"","video_id":"","gold":"","timestamp":,"type":"gift_record"}
- {"send_id":"","good_id":"","video_id":"","gold":"","timestamp":,"type":"gift_record"}
- {"send_id":"","good_id":"","video_id":"","gold":"","timestamp":,"type":"gift_record"}
以上是flume采集后的数据。假设都是在这个flume测试数据.txt里,现在呢,我想按照type来存放到不同的目录下。
即video_info的存放到video_info目录下、userinfo的存放到userinfo目录下、gift_record的存放到gift_record目录下。
则,这样的应用场景,即根据数据里内容的type字段的值的不同,来分别存储。则需要Regex Extractor Interceptor派上用场了。
怎么做呢,其实很简单,把type的值,放到
- # 定义拦截器
- agent1.sources.r1.interceptors = i1
- # 设置拦截器类型
- agent1.sources.r1.interceptors.i1.type = regex_extractor
- # 设置正则表达式,匹配指定的数据,这样设置会在数据的header中增加log_type=”对应的值”
- agent1.sources.r1.interceptors.i1.regex = "type":"(\\w+)"
- agent1.sources.r1.interceptors.i1.serializers = s1
- agent1.sources.r1.interceptors.i1.serializers.s1.name = log_type
为什么是这么来写?
- agent1.sources.r1.interceptors.i1.regex = "type":"(\\w+)"
是因为数据的内容决定的。
- "type":"video_info"
- "type":"userinfo"
- "type":"gift_record"
- #source的名字
- agent1.sources = fileSource
- # channels的名字,建议按照type来命名
- agent1.channels = memoryChannel
- # sink的名字,建议按照目标来命名
- agent1.sinks = hdfsSink
- # 指定source使用的channel名字
- agent1.sources.fileSource.channels = memoryChannel
- # 指定sink需要使用的channel的名字,注意这里是channel
- agent1.sinks.hdfsSink.channel = memoryChannel
- agent1.sources.fileSource.type = exec
- agent1.sources.fileSource.command = tail -F /usr/local/log/server.log
- #------- fileChannel-1相关配置-------------------------
- # channel类型
- agent1.channels.memoryChannel.type = memory
- agent1.channels.memoryChannel.capacity =
- agent1.channels.memoryChannel.transactionCapacity =
- agent1.channels.memoryChannel.byteCapacityBufferPercentage =
- agent1.channels.memoryChannel.byteCapacity =
- #---------拦截器相关配置------------------
- # 定义拦截器
- agent1.sources.fileSource.interceptors = i1
- # 设置拦截器类型
- agent1.sources.fileSource.interceptors.i1.type = regex_extractor
- # 设置正则表达式,匹配指定的数据,这样设置会在数据的header中增加log_type="某个值"
- agent1.sources.fileSource.interceptors.i1.regex = "type":"(\\w+)"
- agent1.sources.fileSource.interceptors.i1.serializers = s1
- agent1.sources.fileSource.interceptors.i1.serializers.s1.name = log_type
- #---------hdfsSink 相关配置------------------
- agent1.sinks.hdfsSink.type = hdfs
- # 注意, 我们输出到下面一个子文件夹datax中
- agent1.sinks.hdfsSink.hdfs.path = hdfs://master:9000/data/types/%Y%m%d/%{log_type}
- agent1.sinks.hdfsSink.hdfs.writeFormat = Text
- agent1.sinks.hdfsSink.hdfs.fileType = DataStream
- agent1.sinks.hdfsSink.hdfs.callTimeout =
- agent1.sinks.hdfsSink.hdfs.useLocalTimeStamp = true
- #当文件大小为52428800字节时,将临时文件滚动成一个目标文件
- agent1.sinks.hdfsSink.hdfs.rollSize =
- #events数据达到该数量的时候,将临时文件滚动成目标文件
- agent1.sinks.hdfsSink.hdfs.rollCount =
- #每隔N s将临时文件滚动成一个目标文件
- agent1.sinks.hdfsSink.hdfs.rollInterval =
- #配置前缀和后缀
- agent1.sinks.hdfsSink.hdfs.filePrefix=run
- agent1.sinks.hdfsSink.hdfs.fileSuffix=.data
监控文件是在
/usr/local/log/server.log
- [root@master local]# pwd
- /usr/local
- [root@master local]# ll
- total
- drwxr-xr-x. root root Sep bin
- drwxr-xr-x. root root Sep etc
- drwxr-xr-x. root root Sep games
- drwxr-xr-x. root root May : include
- drwxr-xr-x. root root May : lib
- drwxr-xr-x. root root Sep lib64
- drwxr-xr-x. root root Sep libexec
- drwxr-xr-x. root root Sep sbin
- drwxr-xr-x. root root May : share
- drwxr-xr-x. root root Sep src
- [root@master local]# mkdir log
- [root@master local]# cd log
- [root@master log]# pwd
- /usr/local/log
- [root@master log]# ll
- total
- [root@master log]#
然后,执行
- [hadoop@master flume-1.7.]$ bin/flume-ng agent --conf conf_RegexExtractorInterceptor/ --conf-file conf_RegexExtractorInterceptor/flume-conf.properties --name agent1 -Dflume.root.logger=INFO,console
然后,我这边,采用如下的一个shell脚本来模拟产生测试数据。
producerLog.sh
- [root@master log]# pwd
- /usr/local/log
- [root@master log]# ll
- total
- [root@master log]# vim producerLog.sh
- #!/bin/bash
- log1='{"id":"14943445328940974610","uid":"840717325115457536","lat":"53.530598","lnt":"-2.5620373","hot
- s":0,"title":"","status":"","topicId":"","end_time":"","watch_num":0,"share_num":"","repl
- ay_url":null,"replay_num":0,"start_time":"","timestamp":1494344571,"type":"video_info"}'
- log2='{"uid":"861848974414839810","nickname":"mick","usign":"","sex":1,"birthday":"","face":"","big_fac
- e":"","email":"abc@qq.com","mobile":"","reg_type":"","last_login_time":"","reg_time":"
- ","last_update_time":"","status":"","is_verified":"","verified_info":"","is_seller":"
- ","level":1,"exp":0,"anchor_level":0,"anchor_exp":0,"os":"android","timestamp":1494344580,"type":"user_info"}'
- log3='{"send_id":"834688818270961664","good_id":"223","video_id":"14943443045138661356","gold":"10","ti
- mestamp":1494344574,"type":"gift_record"}'
- declare -i count
- count=
- while [ 'a' = 'a' ]
- do
- echo -e $log1 >> /usr/local/log/server.log
- echo -e $log2 >> /usr/local/log/server.log
- echo -e $log3 >> /usr/local/log/server.log
- count+=
- if [ ${count} -eq ]
- then
- count=
- echo "sleep..."
- sleep
- fi
- done
这个shell脚本不太难哈。即log1会生成500条、log2会生成500条、log3会生成500条。每隔3秒。
然后,再来创建server.log文件
- [root@master log]# pwd
- /usr/local/log
- [root@master log]# ll
- total
- -rw-r--r-- root root Jul : producerLog.sh
- [root@master log]# vim producerLog.sh
- [root@master log]# touch server.log
- [root@master log]# ll
- total
- -rw-r--r-- root root Jul : producerLog.sh
- -rw-r--r-- root root Jul : server.log
- [root@master log]# cat server.log
- [root@master log]#
然后,来执行这个脚本,以模拟产生数据。
- [root@master log]# pwd
- /usr/local/log
- [root@master log]# ll
- total
- -rw-r--r-- root root Jul : producerLog.sh
- -rw-r--r-- root root Jul : server.log
- [root@master log]# chmod producerLog.sh
- [root@master log]# ll
- total
- -rwxr-xr-x root root Jul : producerLog.sh
- -rw-r--r-- root root Jul : server.log
- [root@master log]# ./producerLog.sh
- -- ::, (SinkRunner-PollingRunner-DefaultSinkProcessor) [WARN - org.apache.flume.sink.hdfs.BucketWriter.append(BucketWriter.java:)] Block Under-replication detected. Rotating file.
- -- ::, (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.hdfs.BucketWriter.close(BucketWriter.java:)] Closing hdfs://master:9000/data/types/20170727//run.1501137914366.data.tmp
- -- ::, (hdfs-hdfsSink-call-runner-) [INFO - org.apache.flume.sink.hdfs.BucketWriter$.call(BucketWriter.java:)] Renaming hdfs://master:9000/data/types/20170727/run.1501137914366.data.tmp to hdfs://master:9000/data/types/20170727/run.1501137914366.data
- -- ::, (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.hdfs.BucketWriter.open(BucketWriter.java:)] Creating hdfs://master:9000/data/types/20170727//run.1501137914367.data.tmp
- -- ::, (SinkRunner-PollingRunner-DefaultSinkProcessor) [WARN - org.apache.flume.sink.hdfs.BucketWriter.append(BucketWriter.java:)] Block Under-replication detected. Rotating file.
- -- ::, (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.hdfs.BucketWriter.close(BucketWriter.java:)] Closing hdfs://master:9000/data/types/20170727/video_info/run.1501137883920.data.tmp
- -- ::, (hdfs-hdfsSink-call-runner-) [INFO - org.apache.flume.sink.hdfs.BucketWriter$.call(BucketWriter.java:)] Renaming hdfs://master:9000/data/types/20170727/video_info/run.1501137883920.data.tmp to hdfs://master:9000/data/types/20170727/video_info/run.1501137883920.data
- -- ::, (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.hdfs.BucketWriter.open(BucketWriter.java:)] Creating hdfs://master:9000/data/types/20170727/video_info/run.1501137883921.data.tmp
- -- ::, (SinkRunner-PollingRunner-DefaultSinkProcessor) [WARN - org.apache.flume.sink.hdfs.BucketWriter.append(BucketWriter.java:)] Block Under-replication detected. Rotating file.
- -- ::, (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.hdfs.BucketWriter.close(BucketWriter.java:)] Closing hdfs://master:9000/data/types/20170727//run.1501137914367.data.tmp
- -- ::, (hdfs-hdfsSink-call-runner-) [INFO - org.apache.flume.sink.hdfs.BucketWriter$.call(BucketWriter.java:)] Renaming hdfs://master:9000/data/types/20170727/run.1501137914367.data.tmp to hdfs://master:9000/data/types/20170727/run.1501137914367.data
- -- ::, (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.hdfs.BucketWriter.open(BucketWriter.java:)] Creating hdfs://master:9000/data/types/20170727//run.1501137914368.data.tmp
- -- ::, (SinkRunner-PollingRunner-DefaultSinkProcessor) [WARN - org.apache.flume.sink.hdfs.BucketWriter.append(BucketWriter.java:)] Block Under-replication detected. Rotating file.
- -- ::, (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.hdfs.BucketWriter.close(BucketWriter.java:)] Closing hdfs://master:9000/data/types/20170727/gift_record/run.1501137916399.data.tmp
- -- ::, (hdfs-hdfsSink-call-runner-) [INFO - org.apache.flume.sink.hdfs.BucketWriter$.call(BucketWriter.java:)] Renaming hdfs://master:9000/data/types/20170727/gift_record/run.1501137916399.data.tmp to hdfs://master:9000/data/types/20170727/gift_record/run.1501137916399.data
- -- ::, (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.hdfs.BucketWriter.open(BucketWriter.java:)] Creating hdfs://master:9000/data/types/20170727/gift_record/run.1501137916400.data.tmp
Search and Replace Interceptor
以上存放,是在
模拟产生的gift_record是存放在/data/types/20170727/gift_record
但是呢。我现在需求是
模拟产生的gift_record是存放在/data/types/20170727/giftRecord
则改为
- agent1.sources.r1.interceptors = i1 i2 i3 i4
- agent1.sources.r1.interceptors.i1.type = search_replace
- agent1.sources.r1.interceptors.i1.searchPattern = "type":"gift_record"
- agent1.sources.r1.interceptors.i1.replaceString = "type":"giftRecord"
- agent1.sources.r1.interceptors.i2.type = search_replace
- agent1.sources.r1.interceptors.i2.searchPattern = "type":"video_info"
- agent1.sources.r1.interceptors.i2.replaceString = "type":"videoInfo"
- agent1.sources.r1.interceptors.i3.type = search_replace
- agent1.sources.r1.interceptors.i3.searchPattern = "type":"user_info"
- agent1.sources.r1.interceptors.i3.replaceString = "type":"userInfo"
- agent1.sources.fileSource.interceptors.i4.type = regex_extractor
- agent1.sources.fileSource.interceptors.i4.regex = "type":"(\\w+)"
- agent1.sources.fileSource.interceptors.i4.serializers = s1
- agent1.sources.fileSource.interceptors.i4.serializers.s1.name = log_type
- [hadoop@master conf_SearchandReplaceInterceptor]$ pwd
- /home/hadoop/app/flume-1.7./conf_SearchandReplaceInterceptor
- [hadoop@master conf_SearchandReplaceInterceptor]$ ll
- total
- -rw-r--r-- hadoop hadoop Jul : flume-conf.properties
- -rw-r--r-- hadoop hadoop Jul : flume-env.ps1.template
- -rw-r--r-- hadoop hadoop Jul : flume-env.sh.template
- -rw-r--r-- hadoop hadoop Jul : log4j.properties
- [hadoop@master conf_SearchandReplaceInterceptor]$ vim flume-conf.properties
- #source的名字
- agent1.sources = fileSource
- # channels的名字,建议按照type来命名
- agent1.channels = memoryChannel
- # sink的名字,建议按照目标来命名
- agent1.sinks = hdfsSink
- # 指定source使用的channel名字
- agent1.sources.fileSource.channels = memoryChannel
- # 指定sink需要使用的channel的名字,注意这里是channel
- agent1.sinks.hdfsSink.channel = memoryChannel
- agent1.sources.fileSource.type = exec
- agent1.sources.fileSource.command = tail -F /usr/local/log/server.log
- #------- fileChannel-1相关配置-------------------------
- # channel类型
- agent1.channels.memoryChannel.type = memory
- agent1.channels.memoryChannel.capacity =
- agent1.channels.memoryChannel.transactionCapacity =
- agent1.channels.memoryChannel.byteCapacityBufferPercentage =
- agent1.channels.memoryChannel.byteCapacity =
- #---------拦截器相关配置------------------
agent1.sources.r1.interceptors = i1 i2 i3 i4
agent1.sources.r1.interceptors.i1.type = search_replace
agent1.sources.r1.interceptors.i1.searchPattern = "type":"gift_record"
agent1.sources.r1.interceptors.i1.replaceString = "type":"giftRecord"
agent1.sources.r1.interceptors.i2.type = search_replace
agent1.sources.r1.interceptors.i2.searchPattern = "type":"video_info"
agent1.sources.r1.interceptors.i2.replaceString = "type":"videoInfo"
agent1.sources.r1.interceptors.i3.type = search_replace
agent1.sources.r1.interceptors.i3.searchPattern = "type":"user_info"
agent1.sources.r1.interceptors.i3.replaceString = "type":"userInfo"
- agent1.sources.fileSource.interceptors.i4.type = regex_extractor
- agent1.sources.fileSource.interceptors.i4.regex = "type":"(\\w+)"
- agent1.sources.fileSource.interceptors.i4.serializers = s1
- agent1.sources.fileSource.interceptors.i4.serializers.s1.name = log_type
- #---------hdfsSink 相关配置------------------
- agent1.sinks.hdfsSink.type = hdfs
- # 注意, 我们输出到下面一个子文件夹datax中
- agent1.sinks.hdfsSink.hdfs.path = hdfs://master:9000/data/types/%Y%m%d/%{log_type}
- agent1.sinks.hdfsSink.hdfs.writeFormat = Text
- agent1.sinks.hdfsSink.hdfs.fileType = DataStream
- agent1.sinks.hdfsSink.hdfs.callTimeout =
- agent1.sinks.hdfsSink.hdfs.useLocalTimeStamp = true
- #当文件大小为52428800字节时,将临时文件滚动成一个目标文件
- agent1.sinks.hdfsSink.hdfs.rollSize =
- #events数据达到该数量的时候,将临时文件滚动成目标文件
- agent1.sinks.hdfsSink.hdfs.rollCount =
- #每隔N s将临时文件滚动成一个目标文件
- agent1.sinks.hdfsSink.hdfs.rollInterval =
- #配置前缀和后缀
- agent1.sinks.hdfsSink.hdfs.filePrefix=run
- agent1.sinks.hdfsSink.hdfs.fileSuffix=.data
然后,执行
- [hadoop@master flume-1.7.]$ bin/flume-ng agent --conf conf_SearchandReplaceInterceptor/ --conf-file conf_SearchandReplaceInterceptor/flume-conf.properties --name agent1 -Dflume.root.logger=INFO,console
我这里,出现了这个错误
- -- ::, (lifecycleSupervisor--) [INFO - org.apache.flume.instrumentation.MonitoredCounterGroup.start(MonitoredCounterGroup.java:)] Component type: SOURCE, name: fileSource started
- -- ::, (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.hdfs.HDFSDataStream.configure(HDFSDataStream.java:)] Serializer = TEXT, UseRawLocalFileSystem = false
- -- ::, (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.hdfs.BucketWriter.open(BucketWriter.java:)] Creating hdfs://master:9000/data/types/20170729//run.1501294672792.data.tmp
- -- ::, (hdfs-hdfsSink-call-runner-) [WARN - org.apache.hadoop.util.NativeCodeLoader.<clinit>(NativeCodeLoader.java:)] Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
- -- ::, (pool--thread-) [ERROR - org.apache.flume.source.ExecSource$ExecRunnable.run(ExecSource.java:)] Failed while running command: tail -F /usr/local/log/server.log
- org.apache.flume.ChannelFullException: Space for commit to queue couldn't be acquired. Sinks are likely not keeping up with sources, or the buffer size is too tight
- at org.apache.flume.channel.MemoryChannel$MemoryTransaction.doCommit(MemoryChannel.java:)
- at org.apache.flume.channel.BasicTransactionSemantics.commit(BasicTransactionSemantics.java:)
- at org.apache.flume.channel.ChannelProcessor.processEventBatch(ChannelProcessor.java:)
- at org.apache.flume.source.ExecSource$ExecRunnable.flushEventBatch(ExecSource.java:)
- at org.apache.flume.source.ExecSource$ExecRunnable.run(ExecSource.java:)
- at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:)
- at java.util.concurrent.FutureTask.run(FutureTask.java:)
- at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:)
- at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:)
- at java.lang.Thread.run(Thread.java:)
- -- ::, (timedFlushExecService21-) [ERROR - org.apache.flume.source.ExecSource$ExecRunnable$.run(ExecSource.java:)] Exception occured when processing event batch
- org.apache.flume.ChannelException: java.lang.InterruptedException
- at org.apache.flume.channel.BasicTransactionSemantics.commit(BasicTransactionSemantics.java:)
- at org.apache.flume.channel.ChannelProcessor.processEventBatch(ChannelProcessor.java:)
- at org.apache.flume.source.ExecSource$ExecRunnable.flushEventBatch(ExecSource.java:)
- at org.apache.flume.source.ExecSource$ExecRunnable.access$(ExecSource.java:)
- at org.apache.flume.source.ExecSource$ExecRunnable$.run(ExecSource.java:)
- at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:)
- at java.util.concurrent.FutureTask.runAndReset(FutureTask.java:)
- at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.access$(ScheduledThreadPoolExecutor.java:)
- at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.run(ScheduledThreadPoolExecutor.java:)
然后,这边模拟产生数据。
- [root@master log]# pwd
- /usr/local/log
- [root@master log]# ll
- total
- -rwxr-xr-x root root Jul : producerLog.sh
- -rw-r--r-- root root Jul : server.log
- [root@master log]# ./producerLog.sh
- sleep...
- sleep...
- sleep...
Flume自定义拦截器(Interceptors)
一、自定义拦截器类型必须是:类全名$内部类名,其实就是内部类名称
如:zhouls.bigdata.MySearchAndReplaceInterceptor$Builder
二、为什么这样写
至于为什么这样写:是因为Interceptor接口还有一个 公共的内部接口(Builder) ,所以自定义拦截器 要是实现 Builder接口,
也就是实现一个内部类(该内部类的主要作用是:获取flume-conf.properties 自定义的 参数,并将参数传递给 自定义拦截器)
三、
本人知识有限,可能描述的不太清楚,可自行了解 java接口与内部类。
由于有时候内置的拦截器不够用,所以需要针对特殊的业务需求自定义拦截器
官方文档中没有发现自定义interceptor的步骤,但是可以根据flume源码参考内置的拦截器的代码
flume-1.7/flume-ng-core/src/main/java/org/apache/flume/interceptor/HostInterceptor.java
大家,去https://github.com/找到,因为,我的flume是1.7.0的。所以如下
修改后的pom.xml为
- <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
- xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
- <modelVersion>4.0.</modelVersion>
- <groupId>zhouls.bigdata</groupId>
- <artifactId>flumeDemo</artifactId>
- <version>0.0.-SNAPSHOT</version>
- <packaging>jar</packaging>
- <name>flumeDemo</name>
- <url>http://maven.apache.org</url>
- <properties>
- <project.build.sourceEncoding>UTF-</project.build.sourceEncoding>
- </properties>
- <dependencies>
- <dependency>
- <groupId>junit</groupId>
- <artifactId>junit</artifactId>
- <version>4.12</version>
- <scope>test</scope>
- </dependency>
- <!-- 此版本的curator操作的zk是3..6版本 -->
- <dependency>
- <groupId>org.apache.curator</groupId>
- <artifactId>curator-framework</artifactId>
- <version>2.10.</version>
- </dependency>
- <!-- https://mvnrepository.com/artifact/org.apache.flume/flume-ng-core -->
- <dependency>
- <groupId>org.apache.flume</groupId>
- <artifactId>flume-ng-core</artifactId>
- <version>1.7.</version>
- </dependency>
- </dependencies>
- </project>
然后,我这里,参考github上的给定参考代码,来写出属于我们自己业务需求的flume自定义拦截器代码编程。
MySearchAndReplaceInterceptor.java.java
- package zhouls.bigdata.flumeDemo;
- import com.google.common.base.Preconditions;
- import org.apache.commons.lang.StringUtils;
- import org.apache.flume.Context;
- import org.apache.flume.Event;
- import org.apache.flume.interceptor.Interceptor;
- import org.slf4j.Logger;
- import org.slf4j.LoggerFactory;
- import java.util.HashMap;
- import java.util.List;
- import java.util.regex.Matcher;
- import java.util.regex.Pattern;
- /**
- * Created by zhouls.
- *
- * 使用说明:
- * ======================================================
- * # 定义拦截器
- * agent.sources.kafkaSource.interceptors = i0
- * # 设置拦截器类型
- * # gift_record:giftRecord的意思是会把日志中的gift_record替换为giftRecord
- * agent.sources.kafkaSource.interceptors.i0.type = zhouls.MySearchAndReplaceInterceptor
- * agent.sources.kafkaSource.interceptors.i0.searchReplace = "gift_record:giftRecord,video_info:videoInfo"
- * ======================================================
- */
- public class MySearchAndReplaceInterceptor implements Interceptor {
- private static final Logger logger = LoggerFactory
- .getLogger(MySearchAndReplaceInterceptor.class);
- /**
- * 需要替换的字符串信息
- * 格式:"key:value,key:value"
- */
- private final String search_replace;
- private String[] splits;
- private String[] key_value;
- private String key;
- private String value;
- private HashMap<String, String> hashMap = new HashMap<String, String>();
- private Pattern compile = Pattern.compile("\"type\":\"(\\w+)\"");
- private Matcher matcher;
- private String group;
- private MySearchAndReplaceInterceptor(String search_replace) {
- this.search_replace = search_replace;
- }
- /**
- * 初始化放在,最开始执行一次
- * 把配置的数据初始化到map中,方便后面调用
- */
- public void initialize() {
- try{
- if(StringUtils.isNotBlank(search_replace)){
- splits = search_replace.split(",");
- for (String key_value_pair:splits) {
- key_value = key_value_pair.split(":");
- key = key_value[];
- value = key_value[];
- hashMap.put(key,value);
- }
- }
- }catch (Exception e){
- logger.error("数据格式错误,初始化失败。"+search_replace,e.getCause());
- }
- }
- public void close() {
- }
- /**
- * 具体的处理逻辑
- * @param event
- * @return
- */
- public Event intercept(Event event) {
- try{
- String origBody = new String(event.getBody());
- matcher = compile.matcher(origBody);
- if(matcher.find()){
- group = matcher.group();
- if(StringUtils.isNotBlank(group)){
- String newBody = origBody.replaceAll("\"type\":\""+group+"\"", "\"type\":\""+hashMap.get(group)+"\"");
- event.setBody(newBody.getBytes());
- }
- }
- }catch (Exception e){
- logger.error("拦截器处理失败!",e.getCause());
- }
- return event;
- }
- public List<Event> intercept(List<Event> events) {
- for (Event event : events) {
- intercept(event);
- }
- return events;
- }
- public static class Builder implements Interceptor.Builder {
- private static final String SEARCH_REPLACE_KEY = "searchReplace";
- private String searchReplace;
- public void configure(Context context) {
- searchReplace = context.getString(SEARCH_REPLACE_KEY);
- Preconditions.checkArgument(!StringUtils.isEmpty(searchReplace),
- "Must supply a valid search pattern " + SEARCH_REPLACE_KEY +
- " (may not be empty)");
- }
- public Interceptor build() {
- Preconditions.checkNotNull(searchReplace,
- "Regular expression searchReplace required");
- return new MySearchAndReplaceInterceptor(searchReplace);
- }
- }
- }
然后把MySearchAndReplaceInterceptor这个类导出成一个jar包。
同时,大家也可以用maven来打jar包
把这个jar包上传到flume1.7.0的lib目录下
- [hadoop@master lib]$ rz
- [hadoop@master lib]$ ls
- apache-log4j-extras-1.1.jar flume-file-channel-1.7..jar flume-taildir-source-1.7..jar kite-data-core-1.0..jar parquet-hive-bundle-1.4..jar
- async-1.4..jar flume-hdfs-sink-1.7..jar flume-thrift-source-1.7..jar kite-data-hbase-1.0..jar parquet-jackson-1.4..jar
- asynchbase-1.7..jar flume-hive-sink-1.7..jar flume-tools-1.7..jar kite-data-hive-1.0..jar protobuf-java-2.5..jar
- avro-1.7..jar flume-irc-sink-1.7..jar flume-twitter-source-1.7..jar kite-hadoop-compatibility-1.0..jar scala-library-2.10..jar
- avro-ipc-1.7..jar flume-jdbc-channel-1.7..jar gson-2.2..jar libthrift-0.9..jar serializer-2.7..jar
- commons-cli-1.2.jar flume-jms-source-1.7..jar guava-11.0..jar log4j-1.2..jar servlet-api-2.5-.jar
- commons-codec-1.8.jar flume-kafka-channel-1.7..jar httpclient-4.2..jar lz4-1.2..jar slf4j-api-1.6..jar
- commons-collections-3.2..jar flume-kafka-source-1.7..jar httpcore-4.1..jar mapdb-0.9..jar slf4j-log4j12-1.6..jar
- commons-compress-1.4..jar flume-ng-auth-1.7..jar irclib-1.10.jar metrics-core-2.2..jar snappy-java-1.1..jar
- commons-dbcp-1.4.jar flume-ng-configuration-1.7..jar jackson-annotations-2.3..jar mina-core-2.0..jar twitter4j-core-3.0..jar
- commons-io-2.1.jar flume-ng-core-1.7..jar jackson-core-2.3..jar MySearchAndReplaceInterceptor.jar twitter4j-media-support-3.0..jar
- commons-jexl-2.1..jar flume-ng-elasticsearch-sink-1.7..jar jackson-core-asl-1.9..jar netty-3.9..Final.jar twitter4j-stream-3.0..jar
- commons-lang-2.5.jar flume-ng-embedded-agent-1.7..jar jackson-databind-2.3..jar opencsv-2.3.jar velocity-1.7.jar
- commons-logging-1.1..jar flume-ng-hbase-sink-1.7..jar jackson-mapper-asl-1.9..jar paranamer-2.3.jar xalan-2.7..jar
- commons-pool-1.5..jar flume-ng-kafka-sink-1.7..jar jetty-6.1..jar parquet-avro-1.4..jar xercesImpl-2.9..jar
- curator-client-2.6..jar flume-ng-log4jappender-1.7..jar jetty-util-6.1..jar parquet-column-1.4..jar xml-apis-1.3..jar
- curator-framework-2.6..jar flume-ng-morphline-solr-sink-1.7..jar joda-time-2.1.jar parquet-common-1.4..jar xz-1.0.jar
- curator-recipes-2.6..jar flume-ng-node-1.7..jar jopt-simple-3.2.jar parquet-encoding-1.4..jar zkclient-0.7.jar
- derby-10.11.1.1.jar flume-ng-sdk-1.7..jar jsr305-1.3..jar parquet-format-2.0..jar
- flume-avro-source-1.7..jar flume-scribe-source-1.7..jar kafka_2.-0.9.0.1.jar parquet-generator-1.4..jar
- flume-dataset-sink-1.7..jar flume-spillable-memory-channel-1.7..jar kafka-clients-0.9.0.1.jar parquet-hadoop-1.4..jar
- [hadoop@master lib]$ pwd
- /home/hadoop/app/flume-1.7./lib
- [hadoop@master lib]$
- drwxr-xr-x hadoop hadoop Apr : conf
- drwxr-xr-x hadoop hadoop Jul : conf_HostInterceptor
- drwxr-xr-x hadoop hadoop Jul : conf_RegexExtractorInterceptor
- drwxr-xr-x hadoop hadoop Jul : conf_SearchandReplaceInterceptor
- -rw-r--r-- hadoop hadoop Sep DEVNOTES
- -rw-r--r-- hadoop hadoop Sep doap_Flume.rdf
- drwxr-xr-x hadoop hadoop Oct docs
- drwxrwxr-x hadoop hadoop Jul : lib
- -rw-r--r-- hadoop hadoop Oct LICENSE
- -rw-r--r-- hadoop hadoop Sep NOTICE
- -rw-r--r-- hadoop hadoop Sep README.md
- -rw-r--r-- hadoop hadoop Oct RELEASE-NOTES
- drwxrwxr-x hadoop hadoop Apr : tools
- [hadoop@master flume-1.7.]$ cp -r conf conf_MySearchAndReplaceInterceptor
- [hadoop@master flume-1.7.]$ ll
- total
- drwxr-xr-x hadoop hadoop Apr : bin
- -rw-r--r-- hadoop hadoop Oct CHANGELOG
- drwxr-xr-x hadoop hadoop Apr : conf
- drwxr-xr-x hadoop hadoop Jul : conf_HostInterceptor
- drwxr-xr-x hadoop hadoop Jul : conf_MySearchAndReplaceInterceptor
- drwxr-xr-x hadoop hadoop Jul : conf_RegexExtractorInterceptor
- drwxr-xr-x hadoop hadoop Jul : conf_SearchandReplaceInterceptor
- -rw-r--r-- hadoop hadoop Sep DEVNOTES
- -rw-r--r-- hadoop hadoop Sep doap_Flume.rdf
- drwxr-xr-x hadoop hadoop Oct docs
- drwxrwxr-x hadoop hadoop Jul : lib
- -rw-r--r-- hadoop hadoop Oct LICENSE
- -rw-r--r-- hadoop hadoop Sep NOTICE
- -rw-r--r-- hadoop hadoop Sep README.md
- -rw-r--r-- hadoop hadoop Oct RELEASE-NOTES
- drwxrwxr-x hadoop hadoop Apr : tools
- [hadoop@master flume-1.7.]$
修改好log4j.properties ,为了方便管理查看日志
- [hadoop@master conf_MySearchAndReplaceInterceptor]$ pwd
- /home/hadoop/app/flume-1.7./conf_MySearchAndReplaceInterceptor
- [hadoop@master conf_MySearchAndReplaceInterceptor]$ ll
- total
- -rw-r--r-- hadoop hadoop Jul : flume-conf.properties.template
- -rw-r--r-- hadoop hadoop Jul : flume-env.ps1.template
- -rw-r--r-- hadoop hadoop Jul : flume-env.sh.template
- -rw-r--r-- hadoop hadoop Jul : log4j.properties
- [hadoop@master conf_MySearchAndReplaceInterceptor]$ mv flume-conf.properties.template flume-conf.properties
- [hadoop@master conf_MySearchAndReplaceInterceptor]$ vim log4j.properties
- #flume.root.logger=DEBUG,console
- flume.root.logger=INFO,LOGFILE
- flume.log.dir=./logs
- flume.log.file=flume_MySearchAndReplaceInterceptor.log
- [hadoop@master conf_MySearchAndReplaceInterceptor]$ ll
- total
- -rw-r--r-- hadoop hadoop Jul : flume-conf.properties
- -rw-r--r-- hadoop hadoop Jul : flume-env.ps1.template
- -rw-r--r-- hadoop hadoop Jul : flume-env.sh.template
- -rw-r--r-- hadoop hadoop Jul : log4j.properties
- [hadoop@master conf_MySearchAndReplaceInterceptor]$ vim flume-conf.properties
然后,修改flume的配置文件如下:
注意:不能为上面。
除非你的程序需要引号(“”),否则不要加引号(“”),本程序不需要引号,因此是错误的
- #source的名字
- agent1.sources = fileSource
- # channels的名字,建议按照type来命名
- agent1.channels = memoryChannel
- # sink的名字,建议按照目标来命名
- agent1.sinks = hdfsSink
- # 指定source使用的channel名字
- agent1.sources.fileSource.channels = memoryChannel
- # 指定sink需要使用的channel的名字,注意这里是channel
- agent1.sinks.hdfsSink.channel = memoryChannel
- agent1.sources.fileSource.type = exec
- agent1.sources.fileSource.command = tail -F /usr/local/log/server.log
- #------- fileChannel-1相关配置-------------------------
- # channel类型
- agent1.channels.memoryChannel.type = memory
- agent1.channels.memoryChannel.capacity =
- agent1.channels.memoryChannel.transactionCapacity =
- agent1.channels.memoryChannel.byteCapacityBufferPercentage =
- agent1.channels.memoryChannel.byteCapacity =
- #---------拦截器相关配置------------------
- #定义拦截器
- agent1.sources.r1.interceptors = i1 i2
- # 设置拦截器类型
- agent1.sources.r1.interceptors.i1.type = zhouls.bigdata.MySearchAndReplaceInterceptor
- agent1.sources.r1.interceptors.i1.searchReplace = gift_record:giftRecord,video_info:videoInfo,user_info:userInfo
- # 设置拦截器类型
- agent1.sources.r1.interceptors.i2.type = regex_extractor
- # 设置正则表达式,匹配指定的数据,这样设置会在数据的header中增加log_type="某个值"
- agent1.sources.r1.interceptors.i2.regex = "type":"(\\w+)"
- agent1.sources.r1.interceptors.i2.serializers = s1
- agent1.sources.r1.interceptors.i2.serializers.s1.name = log_type
- #---------hdfsSink 相关配置------------------
- agent1.sinks.hdfsSink.type = hdfs
- # 注意, 我们输出到下面一个子文件夹datax中
- agent1.sinks.hdfsSink.hdfs.path = hdfs://master:9000/data/types/%Y%m%d/%{log_type}
- agent1.sinks.hdfsSink.hdfs.writeFormat = Text
- agent1.sinks.hdfsSink.hdfs.fileType = DataStream
- agent1.sinks.hdfsSink.hdfs.callTimeout =
- agent1.sinks.hdfsSink.hdfs.useLocalTimeStamp = true
- #当文件大小为52428800字节时,将临时文件滚动成一个目标文件
- agent1.sinks.hdfsSink.hdfs.rollSize =
- #events数据达到该数量的时候,将临时文件滚动成目标文件
- agent1.sinks.hdfsSink.hdfs.rollCount =
- #每隔N s将临时文件滚动成一个目标文件
- agent1.sinks.hdfsSink.hdfs.rollInterval =
- #配置前缀和后缀
- agent1.sinks.hdfsSink.hdfs.filePrefix=run
- agent1.sinks.hdfsSink.hdfs.fileSuffix=.data
主要在里面添加拦截器的配置是如下
- #---------拦截器相关配置------------------
- #定义拦截器
- agent1.sources.r1.interceptors = i1 i2
- # 设置拦截器类型
- agent1.sources.r1.interceptors.i1.type = zhouls.bigdata.MySearchAndReplaceInterceptor
- agent1.sources.r1.interceptors.i1.searchReplace = "gift_record:giftRecord,video_info:videoInfo,user_info:userInfo"
- # 设置拦截器类型
- agent1.sources.r1.interceptors.i2.type = regex_extractor
- # 设置正则表达式,匹配指定的数据,这样设置会在数据的header中增加log_type="某个值"
- agent1.sources.r1.interceptors.i2.regex = "type":"(\\w+)"
- agent1.sources.r1.interceptors.i2.serializers = s1
- agent1.sources.r1.interceptors.i2.serializers.s1.name = log_type
意思就是,即把gift_record 换成giftRecord
video_info转换成videoInfo
user_info转换成userInfo
然后,启动agent服务即可。
- [hadoop@master flume-1.7.]$ bin/flume-ng agent --conf conf_MySearchAndReplaceInterceptor/ --conf-file conf_MySearchAndReplaceInterceptor/flume-conf.properties --name agent1 -Dflume.root.logger=INFO,console
我这里,出现了这个错误
- -- ::, (lifecycleSupervisor--) [INFO - org.apache.flume.instrumentation.MonitoredCounterGroup.start(MonitoredCounterGroup.java:)] Component type: SOURCE, name: fileSource started
- -- ::, (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.hdfs.HDFSDataStream.configure(HDFSDataStream.java:)] Serializer = TEXT, UseRawLocalFileSystem = false
- -- ::, (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.hdfs.BucketWriter.open(BucketWriter.java:)] Creating hdfs://master:9000/data/types/20170729//run.1501294672792.data.tmp
- -- ::, (hdfs-hdfsSink-call-runner-) [WARN - org.apache.hadoop.util.NativeCodeLoader.<clinit>(NativeCodeLoader.java:)] Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
- -- ::, (pool--thread-) [ERROR - org.apache.flume.source.ExecSource$ExecRunnable.run(ExecSource.java:)] Failed while running command: tail -F /usr/local/log/server.log
- org.apache.flume.ChannelFullException: Space for commit to queue couldn't be acquired. Sinks are likely not keeping up with sources, or the buffer size is too tight
- at org.apache.flume.channel.MemoryChannel$MemoryTransaction.doCommit(MemoryChannel.java:)
- at org.apache.flume.channel.BasicTransactionSemantics.commit(BasicTransactionSemantics.java:)
- at org.apache.flume.channel.ChannelProcessor.processEventBatch(ChannelProcessor.java:)
- at org.apache.flume.source.ExecSource$ExecRunnable.flushEventBatch(ExecSource.java:)
- at org.apache.flume.source.ExecSource$ExecRunnable.run(ExecSource.java:)
- at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:)
- at java.util.concurrent.FutureTask.run(FutureTask.java:)
- at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:)
- at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:)
- at java.lang.Thread.run(Thread.java:)
- -- ::, (timedFlushExecService21-) [ERROR - org.apache.flume.source.ExecSource$ExecRunnable$.run(ExecSource.java:)] Exception occured when processing event batch
- org.apache.flume.ChannelException: java.lang.InterruptedException
- at org.apache.flume.channel.BasicTransactionSemantics.commit(BasicTransactionSemantics.java:)
- at org.apache.flume.channel.ChannelProcessor.processEventBatch(ChannelProcessor.java:)
- at org.apache.flume.source.ExecSource$ExecRunnable.flushEventBatch(ExecSource.java:)
- at org.apache.flume.source.ExecSource$ExecRunnable.access$(ExecSource.java:)
- at org.apache.flume.source.ExecSource$ExecRunnable$.run(ExecSource.java:)
- at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:)
- at java.util.concurrent.FutureTask.runAndReset(FutureTask.java:)
- at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.access$(ScheduledThreadPoolExecutor.java:)
- at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.run(ScheduledThreadPoolExecutor.java:)
见博客
Flume启动运行时报错org.apache.flume.ChannelFullException: Space for commit to queue couldn't be acquired. Sinks are likely not keeping up with sources, or the buffer size is too tight解决办法(图文详解)
中间,我这里还出现下面这个错误
Flume启动时报错Caused by: java.lang.InterruptedException: Timed out before HDFS call was made. Your hdfs.callTimeout might be set too low or HDFS calls are taking too long.解决办法(图文详解)
中间,我这里还出现下面这个错误
Flume启动报错[ERROR - org.apache.flume.sink.hdfs. Hit max consecutive under-replication rotations (30); will not continue rolling files under this path due to under-replication解决办法(图文详解)
- [root@master log]# ll
- total
- -rwxr-xr-x root root Jul : producerLog.sh
- -rw-r--r-- root root Jul : server.log
- [root@master log]# ./producerLog.sh
查看
我这里,貌似懂了
是要达到那么多的临时文件大小生成后
才会有一股目标目录出来
让它等吧
同时,大家可以关注我的个人博客:
http://www.cnblogs.com/zlslch/ 和 http://www.cnblogs.com/lchzls/ http://www.cnblogs.com/sunnyDream/
详情请见:http://www.cnblogs.com/zlslch/p/7473861.html
人生苦短,我愿分享。本公众号将秉持活到老学到老学习无休止的交流分享开源精神,汇聚于互联网和个人学习工作的精华干货知识,一切来于互联网,反馈回互联网。
目前研究领域:大数据、机器学习、深度学习、人工智能、数据挖掘、数据分析。 语言涉及:Java、Scala、Python、Shell、Linux等 。同时还涉及平常所使用的手机、电脑和互联网上的使用技巧、问题和实用软件。 只要你一直关注和呆在群里,每天必须有收获
对应本平台的讨论和答疑QQ群:大数据和人工智能躺过的坑(总群)(161156071)
Flume自定义拦截器(Interceptors)或自带拦截器时的一些经验技巧总结(图文详解)的更多相关文章
- 基于Web的Kafka管理器工具之Kafka-manager的编译部署详细安装 (支持kafka0.8、0.9和0.10以后版本)(图文详解)(默认端口或任意自定义端口)
不多说,直接上干货! 至于为什么,要写这篇博客以及安装Kafka-manager? 问题详情 无奈于,在kafka里没有一个较好自带的web ui.启动后无法观看,并且不友好.所以,需安装一个第三方的 ...
- Flume启动运行时报错org.apache.flume.ChannelFullException: Space for commit to queue couldn't be acquired. Sinks are likely not keeping up with sources, or the buffer size is too tight解决办法(图文详解)
前期博客 Flume自定义拦截器(Interceptors)或自带拦截器时的一些经验技巧总结(图文详解) 问题详情 启动agent服务 [hadoop@master flume-1.7.0]$ ...
- Flume启动时报错Caused by: java.lang.InterruptedException: Timed out before HDFS call was made. Your hdfs.callTimeout might be set too low or HDFS calls are taking too long.解决办法(图文详解)
前期博客 Flume自定义拦截器(Interceptors)或自带拦截器时的一些经验技巧总结(图文详解) 问题详情 -- ::, (agent-shutdown-hook) [INFO - org.a ...
- Flume启动报错[ERROR - org.apache.flume.sink.hdfs. Hit max consecutive under-replication rotations (30); will not continue rolling files under this path due to under-replication解决办法(图文详解)
前期博客 Flume自定义拦截器(Interceptors)或自带拦截器时的一些经验技巧总结(图文详解) 问题详情 -- ::, (SinkRunner-PollingRunner-Default ...
- Flume中的flume-env.sh和log4j.properties配置调整建议(图文详解)
GC是内存的回收的意思. Flume中的flume-env.sh配置调整建议 [hadoop@master conf_HostInterceptor]$ pwd /home/hadoop/app/fl ...
- Stamus Networks的产品SELKS(Suricata IDPS、Elasticsearch 、Logstash 、Kibana 和 Scirius )的下载和安装(带桌面版和不带桌面版)(图文详解)
不多说,直接上干货! SELKS是什么? SELKS 是Stamus Networks的产品,它是基于Debian的自启动运行发行,面向网络安全管理.它基于自己的图形规则管理器提供一套完整的.易于使 ...
- Windows下的Jupyter Notebook 安装与自定义启动(图文详解)
不多说,直接上干货! 前期博客 Windows下的Python 3.6.1的下载与安装(适合32bits和64bits)(图文详解) 这是我自定义的Python 的安装目录 (D:\SoftWare\ ...
- 基于Web的Kafka管理器工具之Kafka-manager启动时出现Exception in thread "main" java.lang.UnsupportedClassVersionError错误解决办法(图文详解)
不多说,直接上干货! 前期博客 基于Web的Kafka管理器工具之Kafka-manager的编译部署详细安装 (支持kafka0.8.0.9和0.10以后版本)(图文详解) 问题详情 我在Kaf ...
- 基于Web的Kafka管理器工具之Kafka-manager安装之后第一次进入web UI的初步配置(图文详解)
前期博客 基于Web的Kafka管理器工具之Kafka-manager的编译部署详细安装 (支持kafka0.8.0.9和0.10以后版本)(图文详解) 基于Web的Kafka管理器工具之Kafka- ...
随机推荐
- 【290】Python 常用说明
1. 双击直接运行 python 代码暂停显示的方法:python学习笔记(3)--IDLE双击运行后暂停 需要添加如下代码: import os os.system("pause" ...
- How to fix apt-get GPG error NO_PUBKEY Ubuntu 14
This morning when I do apt-get update on my new Ubuntu 14.04 server, I got these error messages: R ...
- Java多线程-新特征-阻塞栈LinkedBlockingDeque
对于阻塞栈,与阻塞队列相似.不同点在于栈是“后入先出”的结构,每次操作的是栈顶,而队列是“先进先出”的结构,每次操作的是队列头. 这里要特别说明一点的是,阻塞栈是Java6的新特征.. Java为阻塞 ...
- xml和configparser模块
一.xml模块 xml是实现不同语言或程序之间进行数据交换的协议,跟json差不多,但json使用起来更简单, 但至今很多传统公司如金融行业的很多系统的接口还主要是xml. xml的格式如下,就是通过 ...
- PHPMailer fe v4.11 For Thinkphp 3.2
PHPMailer fe v4.11 For Thinkphp 3.2,你值得拥有! 今晚用TP3.2开发一个东西的时候需要邮件发送功能,理所当然的想到了PHPMailer.于是有了此文!------ ...
- Eclipse右击jsp没有运行选项
maven项目低级错误,没有更新maven资源库.....更新后就运行起来了
- C#连接Mysql数据库 MysqlHelper.cs文件
mysql.data.dll下载_c#连接mysql必要插件mysql.data.dll是C#操作MYSQL的驱动文件,是c#连接mysql必要插件,使c#语言更简洁的操作mysql数据库.当你的电脑 ...
- PyGrub
from:https://wiki.debian.org/PyGrub Using pyGRUB on Wheezy to boot a domU kernel Using pyGRUB from x ...
- Cunit编译安装
1. Examples/Makefile.am:26: to 'configure.ac' and run 'autoconf' again. configure.ac:211: error: re ...
- Python3 使用selenium库登陆知乎并保存cookie为本地文件
Python3 使用selenium库登陆知乎并保存cookie为本地文件 学习使用selenium库模拟登陆知乎,并将cookie保存为本地文件,然后供以后(requests模块)使用,用selen ...