Description

Informatikverbindetdichundmich.

信息将你我连结。B君希望以维护一个长度为n的数组,这个数组的下标为从1到n的正整数。一共有m个操作,可以

分为两种:0 l r表示将第l个到第r个数(al,al+1,...,ar)中的每一个数ai替换为c^ai,即c的ai次方,其中c是

输入的一个常数,也就是执行赋值ai=c^ai1 l r求第l个到第r个数的和,也就是输出:sigma(ai),l<=i<=rai因为

这个结果可能会很大,所以你只需要输出结果mod p的值即可。

Input

第一行有三个整数n,m,p,c,所有整数含义见问题描述。

接下来一行n个整数,表示a数组的初始值。

接下来m行,每行三个整数,其中第一个整数表示了操作的类型。

如果是0的话,表示这是一个修改操作,操作的参数为l,r。

如果是1的话,表示这是一个询问操作,操作的参数为l,r。

1 ≤ n ≤ 50000, 1 ≤ m ≤ 50000, 1 ≤ p ≤ 100000000, 0 < c <p, 0 ≤ ai < p

Output

对于每个询问操作,输出一行,包括一个整数表示答案mod p的值。

Sample Input

4 4 7 2

1 2 3 4

0 1 4

1 2 4

0 1 4

1 1 3

Sample Output

0

3

Sol

根据扩展欧拉定理,参照bzoj3884,我们发现某个数字做一定次数比操作之后就不会变了,这个次数在\(logn\)左右,所以就可以用线段树维护区间和以及这个区间的数字有没有都处理完毕,然后直接维护即可。时间复杂度\(nlog^3n\),由于本题数据范围\(50000\),所以可以通过。

注意细节:判断某个数字有没有超过\(\varphi(p)\),以及\(\varphi(1)=\varphi(2)=1\),但是我们必须要在\(p=1\)的时候才能停止。

Code

#include <bits/stdc++.h>
using namespace std;
int n,m,P,c,K,op,l,r,a[50005],p[50005],V[50005],pr[50005],tot,sm[200005],mn[200005];
int phi(int x)
{
int res=x;
for(int i=1;pr[i]*pr[i]<=x;i++)
{
if(x%pr[i]) continue;
res-=res/pr[i];
while(x%pr[i]==0) x/=pr[i];
}
if(x>1) res-=res/x;return res;
}
void build(int x,int l,int r)
{
if(l==r){scanf("%d",&a[l]);sm[x]=a[l]%P;mn[x]=0;return;}
int M=(l+r)>>1;build(x<<1,l,M);build(x<<1|1,M+1,r);
sm[x]=(sm[x<<1]+sm[x<<1|1])%P;mn[x]=min(mn[x<<1],mn[x<<1|1]);
}
int ksm(int a,int b,int P,bool &f)
{
int res=1;bool gg=0;
for(;b;b>>=1,a=1ll*a*a%P)
{
if(b&1) f|=(gg|(1ll*res*a>=P)),res=1ll*res*a%P;
if(1ll*a*a>=P) gg=1;
}
return res;
}
int cal(int dep,int x)
{
int res=x;if(res>=p[dep]) res=res%p[dep]+p[dep];
while(dep)
{
dep--;bool flag=0;
res=ksm(c,res,p[dep],flag);
if(flag) res+=p[dep];
}
return res%p[dep];
}
void upd(int x,int l,int r,int b,int e)
{
if(mn[x]>=K) return;
if(l==r){mn[x]++;sm[x]=cal(mn[x],a[l]);return;}
int M=(l+r)>>1;
if(b<=M) upd(x*2,l,M,b,e);if(e>M) upd(x*2+1,M+1,r,b,e);
sm[x]=(sm[x<<1]+sm[x<<1|1])%P;mn[x]=min(mn[x<<1],mn[x<<1|1]);
}
int que(int x,int l,int r,int b,int e)
{
if(b<=l&&r<=e) return sm[x];
int M=(l+r)>>1;
return ((b<=M?que(x*2,l,M,b,e):0)+(e>M?que(x*2+1,M+1,r,b,e):0))%P;
}
int main()
{
for(int i=2;i<=50000;i++)
{
if(!V[i]) pr[++tot]=i;
for(int j=1;j<=tot&&i*pr[j]<=50000;j++){V[i*pr[j]]=1;if(i%pr[j]==0) break;}
}
scanf("%d%d%d%d",&n,&m,&P,&c);
p[0]=P;while(p[K]!=1){++K;p[K]=phi(p[K-1]);}p[++K]=1;
for(build(1,1,n);m--;)
{
scanf("%d%d%d",&op,&l,&r);
if(op==0) upd(1,1,n,l,r);
else printf("%d\n",que(1,1,n,l,r));
}
}

【bzoj4869】[Shoi2017]相逢是问候 线段树+扩展欧拉定理的更多相关文章

  1. [BZOJ4869][六省联考2017]相逢是问候(线段树+扩展欧拉定理)

    4869: [Shoi2017]相逢是问候 Time Limit: 40 Sec  Memory Limit: 512 MBSubmit: 1313  Solved: 471[Submit][Stat ...

  2. 【BZOJ4869】相逢是问候 [线段树][欧拉定理]

    相逢是问候 Time Limit: 40 Sec  Memory Limit: 512 MB[Submit][Status][Discuss] Description Informatikverbin ...

  3. BZOJ4869 [Shoi2017]相逢是问候 【扩展欧拉定理 + 线段树】

    题目链接 BZOJ4869 题解 这题调得我怀疑人生,,结果就是因为某些地方\(sb\)地忘了取模 前置题目:BZOJ3884 扩展欧拉定理: \[c^a \equiv c^{a \mod \varp ...

  4. bzoj4869: [Shoi2017]相逢是问候(欧拉函数+线段树)

    这题是六省联考的...据说数据还出了点锅,心疼六省选手QAQ 首先要知道扩展欧拉定理... 可以发现每次区间操作都会使模数进行一次phi操作,而一个数最多取logp次phi就会变成1,这时后面的指数就 ...

  5. Bzoj4869: [Shoi2017]相逢是问候

    题面 传送门 Sol 摆定理 \[ a^b\equiv \begin{cases} a^{b\%\phi(p)}~~~~~~~~~~~gcd(a,p)=1\\ a^b~~~~~~~~~~~~~~~~~ ...

  6. bzoj 4869: [Shoi2017]相逢是问候 [扩展欧拉定理 线段树]

    4869: [Shoi2017]相逢是问候 题意:一个序列,支持区间\(a_i \leftarrow c^{a_i}\),区间求和.在模p意义下. 类似于开根操作,每次取phi在log次后就不变了. ...

  7. 【BZOJ4869】相逢是问候(线段树,欧拉定理)

    [BZOJ4869]相逢是问候(线段树,欧拉定理) 题面 BZOJ 题解 根据欧拉定理递归计算(类似上帝与集合的正确用法) 所以我们可以用线段树维护区间最少的被更新的多少次 如果超过了\(\varph ...

  8. BZOJ:4869: [Shoi2017]相逢是问候

    4869: [Shoi2017]相逢是问候 先说点正经的…… 显然做了有限次(我只知道是有限次,而且不会大,别人说是log次?)修改以后会达到不动点,即以后怎么修改都不变了. 然后就随便做了.(3个l ...

  9. 【bzoj4869】[Shoi2017]相逢是问候 扩展欧拉定理+并查集+树状数组

    题目描述 Informatik verbindet dich und mich. 信息将你我连结. B君希望以维护一个长度为n的数组,这个数组的下标为从1到n的正整数.一共有m个操作,可以分为两种:0 ...

随机推荐

  1. PHP文件操作(二)-文件的读取

    1.fread()    //读取打开的文件 fread(file,length) file:必选项,规定要读取的打开的文件 length:必选项,规定要读取的最大字节数. <?php $fil ...

  2. DataGridView根据条件给单元格绑定图片

    代码区: private void Form1_Load(object sender, EventArgs e) { myClass.mySqliteAPI conn = new myClass.my ...

  3. 通过window.crypto.getRandomValues获得一个大于零的随机数

    window.crypto.getRandomValues(new Uint32Array(1))[0]; 浏览器支持情况如下: IE: no IE Mobile: no Firefox24+ Fir ...

  4. 整理出一个比较实用的SqlHelper类 满足大多数情况的使用

    /// <summary> /// SqlHelper类 by zy 2016-3-11 /// </summary> public sealed class SqlHelpe ...

  5. 获取文件的后缀名。phpinfo

    1: function get_extension($file){ //strrchr 返回 .jpg substr :1 是从1开始. substr(strrchr($file,'.'),1) } ...

  6. 公共技术点之 Java 反射 Reflection

    本文摘录地址: http://codekk.com/open-source-project-analysis/detail/Android/Mr.Simple/%E5%85%AC%E5%85%B1%E ...

  7. 面试题:Java多线程必须掌握的十个问题 背1

    一.进程与线程?并行与并发? 进程代表一个运行中的程序,是资源分配与调度的基本单位.进程有三大特性: 1.独立性:独立的资源,私有的地址空间,进程间互不影响. 2.动态性:进程具有生命周期. 3.并发 ...

  8. postfix配置积累(不断的积累)

    postfix 配置 1.mail_name 默认是Postfix.在收件人信头可以查看,如果不想让别人知道你是用postfix发的,则可以改成其它名字,如:postconf -e mail_name ...

  9. urllib2设置代理

    #coding=utf-8 #公司网络只有连接vpn跳板机才能使用该模块 import urllib2 proxy_handler=urllib2.ProxyHandler({'http':'http ...

  10. Part10-C语言环境初始化-一跃进入C大门lesson3

    1.跳转到c代码 因为内存中的代码来自于垫脚石SRAM,他们是相同的. 采用绝对跳转方式来完成. 因为我们是从汇编代码跳转到c语言的程序,所以我们要提前准备一个main.c文件. 修改makefile ...