On a grid map there are n little men and n houses. In each unit time, every little man can move one unit step, either horizontally, or vertically, to an adjacent point. For each little man, you need to pay a $1 travel fee for every step he moves, until he enters a house. The task is complicated with the restriction that each house can accommodate only one little man.

Your task is to compute the minimum amount of money you need to pay in order to send these n little men into those n different houses. The input is a map of the scenario, a '.' means an empty space, an 'H' represents a house on that point, and am 'm' indicates there is a little man on that point. 

You can think of each point on the grid map as a quite large square, so it can hold n little men at the same time; also, it is okay if a little man steps on a grid with a house without entering that house.

Input

There are one or more test cases in the input. Each case starts with a line giving two integers N and M, where N is the number of rows of the map, and M is the number of columns. The rest of the input will be N lines describing the map. You may assume both N and M are between 2 and 100, inclusive. There will be the same number of 'H's and 'm's on the map; and there will be at most 100 houses. Input will terminate with 0 0 for N and M.

Output

For each test case, output one line with the single integer, which is the minimum amount, in dollars, you need to pay.

Sample Input

2 2
.m
H.
5 5
HH..m
.....
.....
.....
mm..H
7 8
...H....
...H....
...H....
mmmHmmmm
...H....
...H....
...H....
0 0

Sample Output

2
10
28 这个题目难在建图,就是把每一个人的位置,和每一个房子连起来,容量为1,费用为两个之间的距离。
然后就跑一个最小费用最大流就可以了。
#include <cstdio>
#include <cstdlib>
#include <queue>
#include <vector>
#include <iostream>
#include <algorithm>
#include <map>
#include <cstring>
#include <cmath>
#include <string>
#define inf 0x3f3f3f3f
using namespace std;
typedef long long ll;
const int INF = 0x3f3f3f3f;
const int maxn = + ;
struct edge
{
int u, v, c, f, cost;
edge(int u, int v, int c, int f, int cost) :u(u), v(v), c(c), f(f), cost(cost) {}
};
vector<edge>e;
vector<int>G[maxn];
int a[maxn];//找增广路每个点的水流量
int p[maxn];//每次找增广路反向记录路径
int d[maxn];//SPFA算法的最短路
int inq[maxn];//SPFA算法是否在队列中
int s, t;
void init()
{
for (int i = ; i <= maxn; i++)G[i].clear();
e.clear();
}
void add(int u, int v, int c, int cost)
{
e.push_back(edge(u, v, c, , cost));
e.push_back(edge(v, u, , , -cost));
int m = e.size();
G[u].push_back(m - );
G[v].push_back(m - );
}
bool bellman(int s, int t, int& flow, long long & cost)
{
memset(d, inf, sizeof(d));
memset(inq, , sizeof(inq));
d[s] = ; inq[s] = ;//源点s的距离设为0,标记入队
p[s] = ; a[s] = INF;//源点流量为INF(和之前的最大流算法是一样的) queue<int>q;//Bellman算法和增广路算法同步进行,沿着最短路拓展增广路,得出的解一定是最小费用最大流
q.push(s);
while (!q.empty())
{
int u = q.front();
q.pop();
inq[u] = ;//入队列标记删除
for (int i = ; i < G[u].size(); i++)
{
edge & now = e[G[u][i]];
int v = now.v;
if (now.c > now.f && d[v] > d[u] + now.cost)
//now.c > now.f表示这条路还未流满(和最大流一样)
//d[v] > d[u] + e.cost Bellman 算法中边的松弛
{
d[v] = d[u] + now.cost;//Bellman 算法边的松弛
p[v] = G[u][i];//反向记录边的编号
a[v] = min(a[u], now.c - now.f);//到达v点的水量取决于边剩余的容量和u点的水量
if (!inq[v]) { q.push(v); inq[v] = ; }//Bellman 算法入队
}
}
}
if (d[t] == INF)return false;//找不到增广路
flow += a[t];//最大流的值,此函数引用flow这个值,最后可以直接求出flow
cost += (long long)d[t] * (long long)a[t];//距离乘上到达汇点的流量就是费用
for (int u = t; u != s; u = e[p[u]].u)//逆向存边
{
e[p[u]].f += a[t];//正向边加上流量
e[p[u] ^ ].f -= a[t];//反向边减去流量 (和增广路算法一样)
}
return true;
}
int MincostMaxflow(int s, int t, long long & cost)
{
cost = ;
int flow = ;
while (bellman(s, t, flow, cost));//由于Bellman函数用的是引用,所以只要一直调用就可以求出flow和cost
return flow;//返回最大流,cost引用可以直接返回最小费用
}
struct node
{
int x, y;
node(int x=,int y=):x(x),y(y){}
};
node peo[], house[];
char mp[][];
int main()
{
int n, m;
while(cin>>n>>m)
{
init();
int cas = , tot = ;
if (n == && m == ) break;
for (int i = ; i <= n; i++)
{
cin >> mp[i] + ;
for(int j=;j<=m;j++)
{
if (mp[i][j] == 'm') peo[++cas] = node(i, j);
if (mp[i][j] == 'H') house[++tot] = node(i, j);
}
}
s = , t = cas + tot + ;
for (int i = ; i <= cas; i++) add(s, i, , );
for (int i = ; i <= tot; i++) add(cas + i, t, , );
for(int i=;i<=cas;i++)
{
for(int j=;j<=tot;j++)
{
int cost = abs(peo[i].x - house[j].x) + abs(peo[i].y - house[j].y);
add(i, j + cas, , cost);
}
}
ll cost = ;
int ans = MincostMaxflow(s, t, cost);
printf("%lld\n", cost);
}
return ;
}

D - Going Home POJ - 2195 网络流的更多相关文章

  1. POJ 2195 Going Home 最小费用最大流 尼玛,心累

    D - Going Home Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Subm ...

  2. poj 2195 二分图带权匹配+最小费用最大流

    题意:有一个矩阵,某些格有人,某些格有房子,每个人可以上下左右移动,问给每个人进一个房子,所有人需要走的距离之和最小是多少. 貌似以前见过很多这样类似的题,都不会,现在知道是用KM算法做了 KM算法目 ...

  3. POJ 2195 Going Home / HDU 1533(最小费用最大流模板)

    题目大意: 有一个最大是100 * 100 的网格图,上面有 s 个 房子和人,人每移动一个格子花费1的代价,求最小代价让所有的人都进入一个房子.每个房子只能进入一个人. 算法讨论: 注意是KM 和 ...

  4. POJ 2195 Going Home (带权二分图匹配)

    POJ 2195 Going Home (带权二分图匹配) Description On a grid map there are n little men and n houses. In each ...

  5. poj 2195 Going Home(最小费最大流)

    poj 2195 Going Home Description On a grid map there are n little men and n houses. In each unit time ...

  6. 【POJ 2195】 Going Home(KM算法求最小权匹配)

    [POJ 2195] Going Home(KM算法求最小权匹配) Going Home Time Limit: 1000MS   Memory Limit: 65536K Total Submiss ...

  7. (网络流 匹配 KM) Going Home --poj -- 2195

    链接: http://acm.hust.edu.cn/vjudge/contest/view.action?cid=82835#problem/D 有n个人有n栋房子,每栋房子里能进一个人,但每走一格 ...

  8. kuangbin专题专题十一 网络流 Going Home POJ - 2195

    题目链接:https://vjudge.net/problem/POJ-2195 思路:曼哈顿距离来求每个人到每个房间的距离,把距离当作费用. 就可以用最小费用最大流来解决了,把每个房子拆成两个点,限 ...

  9. 图论--网络流--费用流POJ 2195 Going Home

    Description On a grid map there are n little men and n houses. In each unit time, every little man c ...

随机推荐

  1. Oracle RAC集群搭建(一)-ASM共享存储卷

    01, ASM共享存储卷 安装集群的话,必须要有共享磁盘,目的是为作裁决磁盘使用.还需要有数据文件的共享磁盘 02,规划 主机 裁决磁盘 数据 rac1        1G*1          20 ...

  2. pip install xxx -i https://pypi.tuna.tsinghua.edu.cn/simple

    pip install xxx -i https://pypi.tuna.tsinghua.edu.cn/simple 快速下载

  3. 如何运营亿级QPS的Redis系统

    欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 作者:冯伟源,高级工程师,腾讯云Redis系统运维负责人.6年DBA经验,一直从事SQL优化.实例调优.数据库架构.海量数据库集群运维.运营 ...

  4. hrb——开锁魔法I——————【规律】

    解题思路:从1到n的倒数之和. #include<stdio.h> #include<string.h> #include<algorithm> using nam ...

  5. springboot整合rabbitmq,支持消息确认机制

    安装 推荐一篇博客https://blog.csdn.net/zhuzhezhuzhe1/article/details/80464291 项目结构 POM.XML <?xml version= ...

  6. 【VirtualBox】快照

    一.快照备份 虚拟机系统快照下来,以后就可以恢复到快照之前的系统 右上角->虚拟电脑工具->快照

  7. [转]MVC系列——MVC源码学习:打造自己的MVC框架(一:核心原理)

    本文转自:http://www.cnblogs.com/landeanfen/p/5989092.html 阅读目录 一.MVC原理解析 1.MVC原理 二.HttpHandler 1.HttpHan ...

  8. Node.js之Buffer

    JavaScript 语言自身只有字符串数据类型,没有二进制数据类型.但在处理像TCP流或文件流时,必须使用到二进制数据.因此在 Node.js中,定义了一个 Buffer 类,该类用来创建一个专门存 ...

  9. (三)HTML中的列表标签、框架集及表单标签

    一.HTML的列表标签 在网页中,经常可以看到,有的内容排列如同word里面的项目编号,这就是HTML的无序排列和有序排列起到的作用.. HTML之无序排列:<ul></ul> ...

  10. js之闭包

    函数作为返回值 高阶函数除了可以接受函数作为参数外,还可以把函数作为结果值返回. 我们来实现一个对Array的求和.通常情况下,求和的函数是这样定义的: function sum(arr) { ret ...