D - Going Home POJ - 2195 网络流
Your task is to compute the minimum amount of money you need to pay in order to send these n little men into those n different houses. The input is a map of the scenario, a '.' means an empty space, an 'H' represents a house on that point, and am 'm' indicates there is a little man on that point.
You can think of each point on the grid map as a quite large square, so it can hold n little men at the same time; also, it is okay if a little man steps on a grid with a house without entering that house.
Input
Output
Sample Input
2 2
.m
H.
5 5
HH..m
.....
.....
.....
mm..H
7 8
...H....
...H....
...H....
mmmHmmmm
...H....
...H....
...H....
0 0
Sample Output
2
10
28 这个题目难在建图,就是把每一个人的位置,和每一个房子连起来,容量为1,费用为两个之间的距离。
然后就跑一个最小费用最大流就可以了。
#include <cstdio>
#include <cstdlib>
#include <queue>
#include <vector>
#include <iostream>
#include <algorithm>
#include <map>
#include <cstring>
#include <cmath>
#include <string>
#define inf 0x3f3f3f3f
using namespace std;
typedef long long ll;
const int INF = 0x3f3f3f3f;
const int maxn = + ;
struct edge
{
int u, v, c, f, cost;
edge(int u, int v, int c, int f, int cost) :u(u), v(v), c(c), f(f), cost(cost) {}
};
vector<edge>e;
vector<int>G[maxn];
int a[maxn];//找增广路每个点的水流量
int p[maxn];//每次找增广路反向记录路径
int d[maxn];//SPFA算法的最短路
int inq[maxn];//SPFA算法是否在队列中
int s, t;
void init()
{
for (int i = ; i <= maxn; i++)G[i].clear();
e.clear();
}
void add(int u, int v, int c, int cost)
{
e.push_back(edge(u, v, c, , cost));
e.push_back(edge(v, u, , , -cost));
int m = e.size();
G[u].push_back(m - );
G[v].push_back(m - );
}
bool bellman(int s, int t, int& flow, long long & cost)
{
memset(d, inf, sizeof(d));
memset(inq, , sizeof(inq));
d[s] = ; inq[s] = ;//源点s的距离设为0,标记入队
p[s] = ; a[s] = INF;//源点流量为INF(和之前的最大流算法是一样的) queue<int>q;//Bellman算法和增广路算法同步进行,沿着最短路拓展增广路,得出的解一定是最小费用最大流
q.push(s);
while (!q.empty())
{
int u = q.front();
q.pop();
inq[u] = ;//入队列标记删除
for (int i = ; i < G[u].size(); i++)
{
edge & now = e[G[u][i]];
int v = now.v;
if (now.c > now.f && d[v] > d[u] + now.cost)
//now.c > now.f表示这条路还未流满(和最大流一样)
//d[v] > d[u] + e.cost Bellman 算法中边的松弛
{
d[v] = d[u] + now.cost;//Bellman 算法边的松弛
p[v] = G[u][i];//反向记录边的编号
a[v] = min(a[u], now.c - now.f);//到达v点的水量取决于边剩余的容量和u点的水量
if (!inq[v]) { q.push(v); inq[v] = ; }//Bellman 算法入队
}
}
}
if (d[t] == INF)return false;//找不到增广路
flow += a[t];//最大流的值,此函数引用flow这个值,最后可以直接求出flow
cost += (long long)d[t] * (long long)a[t];//距离乘上到达汇点的流量就是费用
for (int u = t; u != s; u = e[p[u]].u)//逆向存边
{
e[p[u]].f += a[t];//正向边加上流量
e[p[u] ^ ].f -= a[t];//反向边减去流量 (和增广路算法一样)
}
return true;
}
int MincostMaxflow(int s, int t, long long & cost)
{
cost = ;
int flow = ;
while (bellman(s, t, flow, cost));//由于Bellman函数用的是引用,所以只要一直调用就可以求出flow和cost
return flow;//返回最大流,cost引用可以直接返回最小费用
}
struct node
{
int x, y;
node(int x=,int y=):x(x),y(y){}
};
node peo[], house[];
char mp[][];
int main()
{
int n, m;
while(cin>>n>>m)
{
init();
int cas = , tot = ;
if (n == && m == ) break;
for (int i = ; i <= n; i++)
{
cin >> mp[i] + ;
for(int j=;j<=m;j++)
{
if (mp[i][j] == 'm') peo[++cas] = node(i, j);
if (mp[i][j] == 'H') house[++tot] = node(i, j);
}
}
s = , t = cas + tot + ;
for (int i = ; i <= cas; i++) add(s, i, , );
for (int i = ; i <= tot; i++) add(cas + i, t, , );
for(int i=;i<=cas;i++)
{
for(int j=;j<=tot;j++)
{
int cost = abs(peo[i].x - house[j].x) + abs(peo[i].y - house[j].y);
add(i, j + cas, , cost);
}
}
ll cost = ;
int ans = MincostMaxflow(s, t, cost);
printf("%lld\n", cost);
}
return ;
}
D - Going Home POJ - 2195 网络流的更多相关文章
- POJ 2195 Going Home 最小费用最大流 尼玛,心累
D - Going Home Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Subm ...
- poj 2195 二分图带权匹配+最小费用最大流
题意:有一个矩阵,某些格有人,某些格有房子,每个人可以上下左右移动,问给每个人进一个房子,所有人需要走的距离之和最小是多少. 貌似以前见过很多这样类似的题,都不会,现在知道是用KM算法做了 KM算法目 ...
- POJ 2195 Going Home / HDU 1533(最小费用最大流模板)
题目大意: 有一个最大是100 * 100 的网格图,上面有 s 个 房子和人,人每移动一个格子花费1的代价,求最小代价让所有的人都进入一个房子.每个房子只能进入一个人. 算法讨论: 注意是KM 和 ...
- POJ 2195 Going Home (带权二分图匹配)
POJ 2195 Going Home (带权二分图匹配) Description On a grid map there are n little men and n houses. In each ...
- poj 2195 Going Home(最小费最大流)
poj 2195 Going Home Description On a grid map there are n little men and n houses. In each unit time ...
- 【POJ 2195】 Going Home(KM算法求最小权匹配)
[POJ 2195] Going Home(KM算法求最小权匹配) Going Home Time Limit: 1000MS Memory Limit: 65536K Total Submiss ...
- (网络流 匹配 KM) Going Home --poj -- 2195
链接: http://acm.hust.edu.cn/vjudge/contest/view.action?cid=82835#problem/D 有n个人有n栋房子,每栋房子里能进一个人,但每走一格 ...
- kuangbin专题专题十一 网络流 Going Home POJ - 2195
题目链接:https://vjudge.net/problem/POJ-2195 思路:曼哈顿距离来求每个人到每个房间的距离,把距离当作费用. 就可以用最小费用最大流来解决了,把每个房子拆成两个点,限 ...
- 图论--网络流--费用流POJ 2195 Going Home
Description On a grid map there are n little men and n houses. In each unit time, every little man c ...
随机推荐
- (转)python strip()函数 去空格\n\r\t函数的用法
原文:http://www.cnblogs.com/zdz8207/p/python_learn_note_20.html python3.4学习笔记(二十) python strip()函数 去空格 ...
- 如何实现一个简单的MVVM框架
接触过web开发的同学想必都接触过MVVM,业界著名的MVVM框架就有AngelaJS.今天闲来无事,决定自己实现一个简单的MVVM框架玩一玩.所谓简单,就是仅仅实现一个骨架,仅表其意,不摹其形. 分 ...
- JAVA 中 if和while的区别
while和if本身就用法不同,一个是循环语句,一个是判断语句. if 只做判断,判断一次之后,便不会再回来了while 的话,循环,直到结果为false,才跳出来 链表的结构,要一直读下去,直到读完 ...
- Kubernetes系列:(1) 初探
1. 背景 在部门内容组织了一次K8s的培训,普及了下K8s的概念.框架.操作等,为便于后期查阅,也为了进一步深究K8s,因此开展K8s系列,周期不定- 2. 概念 (1) 含义:来自希腊语,意为&q ...
- awk - Unix, Linux Command---reference
http://www.tutorialspoint.com/unix_commands/awk.htm NAME gawk - pattern scanning and processing lang ...
- "Sorry this application cannot run under a virtual machine" Error
错误: 运行一个程序是出现了 “sorry this application cannot run under a virtual machine” 错误. 如何解决: 控制面板-->卸载程序- ...
- 如何去除表单元素获得焦点时的外边框:outline (轮廓)
我们在做制作表单页面时,经常会需要消除表单元素带来的边框,这时候我们需要用到两个属性: 1.表单元素未激活状态下的边框,不实现边框: border:none; 2.表单元素获得焦点时的轮廓,隐藏轮廓: ...
- [转]JFreeChart简介及下载、配置
JFreeChart简介 JFreeChart是完全基于Java语言的开源项目,因此可以使用在Java开发环境中,包括Java应用程序,或者是Java Web应用都没有任何问题.结合iText项目,可 ...
- /Date(1410019200000+0800)/如何转换为date对象
<script type="text/javascript">var s = '/Date(1410019200000+0800)/ '; s.replace(/Dat ...
- Libxml2 学习
Libxml2 学习 1.概要 libxml 是一个实现操作XML数据功能的开源C语言库. API参考文档 http://xmlsoft.org/html/libxml-tree.html 2.wi ...