题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3527

把 q[ i ] 除掉。设 g[ i ] = i^2 ,有一半的式子就变成卷积了;另一半只要翻转一下序列就也变成卷积了。

g[ i ] 那个部分FFT过一次之后就不用再FFT了。

注意别在主函数里把全局变量的 len 覆盖了。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define db double
#define ll long long
using namespace std;
const int N=1e5+,M=N<<; const db pi=acos(-);
int n,len,r[M];
db f[N],g[N],ans[N];
struct cpl{db x,y;}a[M],b[M],I;
cpl operator+ (cpl a,cpl b){return (cpl){a.x+b.x,a.y+b.y};}
cpl operator- (cpl a,cpl b){return (cpl){a.x-b.x,a.y-b.y};}
cpl operator* (cpl a,cpl b){return (cpl){a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x};}
void fft(cpl *a,bool fx)
{
for(int i=;i<len;i++)
if(i<r[i])swap(a[i],a[r[i]]);
for(int R=;R<=len;R<<=)
{
int m=R>>;
cpl Wn=(cpl){ cos(pi/m),fx?-sin(pi/m):sin(pi/m) };
for(int i=;i<len;i+=R)
{
cpl w=I;
for(int j=;j<m;j++,w=w*Wn)
{
cpl tmp=w*a[i+m+j];
a[i+m+j]=a[i+j]-tmp;
a[i+j]=a[i+j]+tmp;
}
}
}
}
int main()
{
scanf("%d",&n); I.x=;
for(int i=;i<n;i++)scanf("%lf",&f[i]);
for(int i=;i<n;i++)g[i]=(db)/i/i;
for(int i=;i<n;i++)
a[i].x=f[i],b[i].x=g[i];
len=;//do not 'int len'!!!!!
for(;len<=n<<;len<<=);
for(int i=;i<len;i++)r[i]=(r[i>>]>>)+((i&)?len>>:);
fft(a,); fft(b,);
for(int i=;i<len;i++)a[i]=a[i]*b[i];
fft(a,);
for(int i=;i<n;i++) ans[i]=a[i].x/len;////// /len!!! for(int i=;i<len;i++) a[i].x=a[i].y=;
for(int i=;i<n;i++) a[i].x=f[n--i];
fft(a,);
for(int i=;i<len;i++) a[i]=a[i]*b[i];
fft(a,);
for(int i=;i<n;i++)
{
ans[i]-=a[n--i].x/len;
printf("%.3f\n",ans[i]);
}
return ;
}

bzoj 3527 [Zjoi2014]力——FFT的更多相关文章

  1. bzoj 3527 [Zjoi2014] 力 —— FFT

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3527 看了看TJ才推出来式子,还是不够熟练啊: TJ:https://blog.csdn.n ...

  2. BZOJ 3527: [Zjoi2014]力(FFT)

    我们看一下这个函数,很容易就把他化为 E=sigma(aj/(i-j)/(i-j))(i>j)-sigma(aj/(i-j)/(i-j))(j>i) 把它拆成两半,可以发现分子与分母下标相 ...

  3. BZOJ 3527 [Zjoi2014]力 ——FFT

    [题目分析] FFT,构造数列进行卷积,挺裸的一道题目诶. 还是写起来并不顺手,再练. [代码] #include <cmath> #include <cstdio> #inc ...

  4. 【BZOJ】3527: [Zjoi2014]力 FFT

    [参考]「ZJOI2014」力 - FFT by menci [算法]FFT处理卷积 [题解]将式子代入后,化为Ej=Aj-Bj. Aj=Σqi*[1/(i-j)^2],i=1~j-1. 令f(i)= ...

  5. ●BZOJ 3527 [Zjoi2014]力

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3527 题解: FFT求卷积. $$\begin{aligned}E_i&=\frac ...

  6. BZOJ 3527: [ZJOI2014]力(FFT)

    BZOJ 3527: [ZJOI2014]力(FFT) 题意: 给出\(n\)个数\(q_i\),给出\(Fj\)的定义如下: \[F_j=\sum \limits _ {i < j} \fra ...

  7. 数学(FFT):BZOJ 3527 [Zjoi2014]力

    题目在这里:http://wenku.baidu.com/link?url=X4j8NM14MMYo8Q7uPE7-7GjO2_TXnMFA2azEbBh4pDf7HCENM3-hPEl4mzoe2w ...

  8. bzoj 3527: [Zjoi2014]力 快速傅里叶变换 FFT

    题目大意: 给出n个数\(q_i\)定义 \[f_i = \sum_{i<j}{\frac{q_iq_j}{(i-j)^2}} - \sum_{i>j}\frac{q_iq_j}{(i-j ...

  9. bzoj 3527: [Zjoi2014]力【FFT】

    大力推公式,目标是转成卷积形式:\( C_i=\sum_{j=1}^{i}a_jb_{i-j} \) 首先下标从0开始存,n-- \[ F_i=\frac{\sum_{j<i}\frac{q_j ...

随机推荐

  1. Linux Shell编程 条件判断语法

    if条件判断语句 单分支 if 条件语句 语法格式: if [条件判断式];then 程序 fi 或者 if [条件判断式] then 程序 fi 在使用单分支 if 条件查询时需要注意几点: if ...

  2. Python自然语言处理系列之模拟退火算法

    1.基本概念 模拟退火算法(Simulated Annealing,SA)是一种模拟固体降温过程的最优化算法.其模拟的过程是首先将固体加温至某一温度,固体内部的粒子随温度上升慢慢变为无序的状态,内能增 ...

  3. mysql多表查询原理

    转:https://www.cnblogs.com/Toolo/p/3634563.html MySQL的多表查询(笛卡尔积原理)   先确定数据要用到哪些表. 将多个表先通过笛卡尔积变成一个表. 然 ...

  4. awk中使用shell变量

    方法:使用-v参数. 对于多个shell变量使用多个-v 有个关于shell变量中的空格问题:

  5. php数组函数-array_flip()

    array_flip()函数返回一个反转后的数组,如果同一个值出现多次,则最 后一个键名作为它的值,所有其他的键名将丢失. 如果原数组中的值得数据类型不是字符串或整数,函数将报错. array_fli ...

  6. 线性代数:Ax=b的解

    n列的矩阵A,当且仅当向量b是列空间C(A)的一个向量时,Ax=b有解. C(A)的零空间是N(A),N(A)正交补是A的行空间C(T(A)), 依据上一章的结论,任何Rn向量可以表示为r+n,其中n ...

  7. Linux 系统密码破解

    (一)CentOS Linux 系统密码破解 1.在grub选项菜单按E进入编辑模式 2.编辑kernel那行 /init 1 (或/single) 3.按B重启 4.进入后执行下列命令 root@# ...

  8. Mybatis-config.xml配置文件详解

    1.官方给出的案列: 注意:这些配置在文件中的顺序非常重要!必须严格按照上图中出现的顺序定义 2.properties属性 该属性主要作用就是引入外部的properties是文件,文件格式为xxx=x ...

  9. 关于发邮件报错535 Error:authentication failed&553 authentication is required

    553 authentication is required:这个错误的意思是你必须需要认证. 也就是说,你连接smtp服务器的时候必须使用密码来连接:下面代码红色那句 代码: @Override p ...

  10. linux 查看各目录(文件夹)下文件大小

    # 显示总大小(/下全部文件占用大小) du -sh /* | sort -nr # 显示各文件夹的大小(当前文件夹下各文件夹的大小) du --max-depth=1