【BZOJ4724】[POI2017]Podzielno

Description

B进制数,每个数字i(i=0,1,...,B-1)有a[i]个。你要用这些数字组成一个最大的B进制数X(不能有前导零,不需要用完所有数字),使得X是B-1的倍数。q次询问,每次询问X在B进制下的第k位数字是什么(最低位是第0位)。

Input

第一行包含两个正整数B(2<=B<=10^6),q(1<=q<=10^5)。
第二行包含B个正整数a[0],a[1],a[2],...,a[B-1](1<=a[i]<=10^6)。
接下来q行,每行一个整数k(0<=k<=10^18),表示一个询问。

Output

输出q行,每行一个整数,依次回答每个询问,如果那一位不存在,请输出-1。

Sample Input

3 3
1 1 1
0
1
2

Sample Output

0
2
-1

题解:因为B与B-1互质,所以X是B-1的倍数当且仅当X在B进制下的每一位加起来是B-1的倍数。(在循环之美那题里用到了这个结论,不过我只是看了看~)

然后我们肯定是先全都选,然后看总和%B是多少,然后看最少删掉几个数。一开始还想了想怎么删,后来发现a[i]>=1。。。就直接把那个数删了就行。

然后剩下的数,一定是从大到小一个一个排下来。特判:如果总和%B=0,则不用删!

#include <cstdio>
#include <iostream>
#include <cstring>
using namespace std;
typedef long long ll;
int n,m;
ll v[1000010];
inline ll rd()
{
ll ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-') f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret*f;
}
int main()
{
n=rd(),m=rd();
int i,l,r,mid;
for(i=0;i<n;i++) v[i]=rd(),v[n]=(v[n]+i*v[i])%(n-1);
if(v[n]) v[v[n]]--;
for(i=1;i<n;i++) v[i]+=v[i-1];
for(i=1;i<=m;i++)
{
ll a=rd();
l=0,r=n;
while(l<r)
{
mid=(l+r)>>1;
if(v[mid]>a) r=mid;
else l=mid+1;
}
printf("%d\n",r==n?-1:r);
}
return 0;
}//9 11 1 1 1 1 1 1 1 1 1 0 1 2 3 4 5 6 7 8 9 10

【BZOJ4724】[POI2017]Podzielno 数学+二分的更多相关文章

  1. BZOJ4724 [POI2017]Podzielno

    4724: [POI2017]Podzielno Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 77  Solved: 37[Submit][Stat ...

  2. bzoj 4724 [POI2017]Podzielno 二分+模拟

    [POI2017]Podzielno Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 364  Solved: 160[Submit][Status][ ...

  3. 【bzoj4724】[POI2017]Podzielno 二分

    题目描述 B进制数,每个数字i(i=0,1,...,B-1)有a[i]个.你要用这些数字组成一个最大的B进制数X(不能有前导零,不需要用完所有数字),使得X是B-1的倍数.q次询问,每次询问X在B进制 ...

  4. HDU 6216 A Cubic number and A Cubic Number(数学/二分查找)

    题意: 给定一个素数p(p <= 1e12),问是否存在一对立方差等于p. 分析: 根据平方差公式: 因为p是一个素数, 所以只能拆分成 1*p, 所以 a-b = 1. 然后代入a = b + ...

  5. BZOJ 4724: [POI2017]Podzielno

    Description 由\([0,B-1]\)的数字构造一个 \(B\) 进制数字,使得他是 \(B-1\) 的倍数. Sol 贪心+二分. 首先 \(X\) 是 \(B-1\) 的倍数,那么有 \ ...

  6. UVA 10668 - Expanding Rods(数学+二分)

    UVA 10668 - Expanding Rods 题目链接 题意:给定一个铁棒,如图中加热会变成一段圆弧,长度为L′=(1+nc)l,问这时和原来位置的高度之差 思路:画一下图能够非常easy推出 ...

  7. Success Rate CodeForces - 807C (数学+二分)

    You are an experienced Codeforces user. Today you found out that during your activity on Codeforces ...

  8. CF 483B. Friends and Presents 数学 (二分) 难度:1

    B. Friends and Presents time limit per test 1 second memory limit per test 256 megabytes input stand ...

  9. HDU 5646 DZY Loves Partition 数学 二分

    DZY Loves Partition 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5646 Description DZY loves parti ...

随机推荐

  1. EffectiveJava(24)使用@SuppressWarnings("unchecked")消除非受检警告

    -..使用泛型编程时,会遇到许多编译器警告,如:非受检强制转化警告,非受检方法调用警告,非受检普通数组创建警告,费受精转换警告.这次的内容就是遇到这些警告的时候你该怎么办. PS:非受检警告就是代码上 ...

  2. EXTJS4自学手册——组合图像

    Ext.create('Ext.panel.Panel', { title: '组合图像', renderTo: 'ComplexDiagram', items: [{ xtype: 'button' ...

  3. [性能测试] LoadRunner结果分析 – TPS(转)

    [性能测试] LoadRunner结果分析 – TPS 针对吞吐率和 TPS 的关系,这个在结果分析中如何使用,就个人经验和朋友讨论后,提出如下建议指导,欢迎同僚指正. 相关定义 响应时间 = 网络响 ...

  4. Windows外壳名字空间的浏览

    Windows95/98对Dos/Win3.x作了许多重大改进,在文件系统方面,它除了采用长文件名替代Dos中的8.3文件名以外,引入外壳名字空间(Shell Name Space)来代Dos文件系统 ...

  5. ImageBox Control with Zoom/Pan Capability

    Download source files - 10.8 Kb Download demo project - 6.81 Kb Introduction This control extends th ...

  6. Redis之Set命令

    0.前言 redis对无序集合的操作几个命令,本文介绍几个命令实际操作过程. 1.sadd命令 2.求差集和求并集命令 3.求交集命令 1.sadd命令 void saddCommand(redisC ...

  7. xcode7和ios9适配之路

    从xcode6.x升级xcode7.2之后,发现要做一堆事情来做适配,不然之前的项目没法好好执行. 一.换库 dylib后缀的库都要换成tbd后缀的.例如以下所看到的 换库前: 换库后: 二.http ...

  8. C++语言基础(5)-this和static关键字

    一.this关键字 this是一个指针,可用其访问成员变量或成员函数 下面是使用this的一个完整示例: #include <iostream> using namespace std; ...

  9. 74. First Bad Version 【medium】

    74. First Bad Version [medium] The code base version is an integer start from 1 to n. One day, someo ...

  10. Pairs Forming LCM 在a,b中(a,b<=n)(1 ≤ n ≤ 10^14),有多少组(a,b) (a<b)满足lcm(a,b)==n; lcm(a,b)=p1 ^ max(a1,b1) * p2 ^ max(a2,b2) *..........*pn ^ max(an,bn)

    转自:http://www.cnblogs.com/shentr/p/5285407.html http://acm.hust.edu.cn/vjudge/contest/view.action?ci ...