Nuske vs Phantom Thnook
Nuske vs Phantom Thnook
Time limit : 4sec / Memory limit : 256MB
Score : 700 points
Problem Statement
Nuske has a grid with N rows and M columns of squares. The rows are numbered 1 through N from top to bottom, and the columns are numbered 1 through M from left to right. Each square in the grid is painted in either blue or white. If Si,j is 1, the square at the i-th row and j-th column is blue; if Si,j is 0, the square is white. For every pair of two blue square a and b, there is at most one path that starts from a, repeatedly proceeds to an adjacent (side by side) blue square and finally reachesb, without traversing the same square more than once.
Phantom Thnook, Nuske's eternal rival, gives Q queries to Nuske. The i-th query consists of four integers xi,1, yi,1, xi,2 and yi,2 and asks him the following: when the rectangular region of the grid bounded by (and including) the xi,1-th row, xi,2-th row, yi,1-th column and yi,2-th column is cut out, how many connected components consisting of blue squares there are in the region?
Process all the queries.
Constraints
- 1≤N,M≤2000
- 1≤Q≤200000
- Si,j is either 0 or 1.
- Si,j satisfies the condition explained in the statement.
- 1≤xi,1≤xi,2≤N(1≤i≤Q)
- 1≤yi,1≤yi,2≤M(1≤i≤Q)
Input
The input is given from Standard Input in the following format:
N M Q
S1,1..S1,M
:
SN,1..SN,M
x1,1 yi,1 xi,2 yi,2
:
xQ,1 yQ,1 xQ,2 yQ,2
Output
For each query, print the number of the connected components consisting of blue squares in the region.
Sample Input 1
3 4 4
1101
0110
1101
1 1 3 4
1 1 3 1
2 2 3 4
1 2 2 4
Sample Output 1
3
2
2
2
In the first query, the whole grid is specified. There are three components consisting of blue squares, and thus 3 should be printed.
In the second query, the region within the red frame is specified. There are two components consisting of blue squares, and thus 2 should be printed. Note that squares that belong to the same component in the original grid may belong to different components.
Sample Input 2
5 5 6
11010
01110
10101
11101
01010
1 1 5 5
1 2 4 5
2 3 3 4
3 3 3 3
3 1 3 5
1 1 3 4
Sample Output 2
3
2
1
1
3
2
题意: n*m (n,m<=2000) 的地图,q (q<=200000)次询问,地图每个格子非蓝即白,上下相连,或者左右相连算作连续,还有,每两个蓝色格子,如果连通,保证只有一条确定路径相连,对于每次询问,求范围矩形蓝色连通块个数。
//题解:这题,题意都读了很久。。。常规求连通的算法会超时,因为Q很大。对于每两个连通蓝色格子,只有一条路径连通很关键,每个连通块就变成了一颗树,,所以,即求森林个数,树的话有个性质,点数减边数等于1,所以,即求范围内点数减边数,查询时间复杂度为 O(1)
思路明白,代码比较好写
#include <iostream>
#include <stdio.h>
#include <string.h>
using namespace std;
#define LL long long
#define INF 0x3f3f3f3f
#define MX 2005 int n,m,q;
int ans;
char mp[MX][MX];
int d[MX][MX]; //点
int x[MX][MX]; //线
int up[MX][MX]; //上相连
int lef[MX][MX];//左相连 void slv()
{
memset(x,,sizeof(x));
memset(d,,sizeof(d));
memset(up,,sizeof(up));
memset(lef,,sizeof(lef));
for (int i=;i<=n;i++)
{
for (int j=;j<=m;j++)
{
d[i][j]=d[i-][j]+d[i][j-]-d[i-][j-];
x[i][j]=x[i-][j]+x[i][j-]-x[i-][j-];
up[i][j]=up[i][j-];
lef[i][j]=lef[i-][j];
if (mp[i][j]=='')
{
d[i][j]++;
if (i>&&mp[i-][j]=='') x[i][j]++;
if (j>&&mp[i][j-]=='') x[i][j]++;
if (i>&&mp[i-][j]=='') up[i][j]++;
if (j>&&mp[i][j-]=='') lef[i][j]++;
}
}
}
} int main()
{
scanf("%d%d%d",&n,&m,&q); for (int i=;i<=n;i++)
scanf("%s",mp[i]+); slv(); while (q--)
{
int x1,y1,x2,y2;
scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
if (x1>x2) swap(x1,x2);
if (y1>y2) swap(y1,y2);
int ans = d[x2][y2]-d[x2][y1-]-d[x1-][y2]+d[x1-][y1-]; ans -= x[x2][y2]-x[x2][y1-]-x[x1-][y2]+x[x1-][y1-];
ans += up[x1][y2]-up[x1][y1-];
ans += lef[x2][y1]-lef[x1-][y1]; cout<<ans<<endl;
}
return ;
}
Nuske vs Phantom Thnook的更多相关文章
- AtCoder:C - Nuske vs Phantom Thnook
C - Nuske vs Phantom Thnook https://agc015.contest.atcoder.jp/tasks/agc015_c 题意: n*m的网格,每个格子可能是蓝色, 可 ...
- AGC 015C.Nuske vs Phantom Thnook(思路 前缀和)
题目链接 闻本题有格子,且何谓格子也 \(Description\) 给定\(n*m\)的蓝白矩阵,保证蓝格子形成的的同一连通块内,某蓝格子到达另一个蓝格子的路径唯一. \(Q\)次询问.每次询问一个 ...
- AGC015 C Nuske vs Phantom Thnook(前缀和)
题意 题目链接 给出一张$n \times m$的网格,其中$1$为蓝点,$2$为白点. $Q$次询问,每次询问一个子矩阵内蓝点形成的联通块的数量 保证任意联通块内的任意蓝点之间均只有一条路径可达 S ...
- AtCoder Grand Contest 015 C - Nuske vs Phantom Thnook
题目传送门:https://agc015.contest.atcoder.jp/tasks/agc015_c 题目大意: 现有一个\(N×M\)的矩阵\(S\),若\(S_{i,j}=1\),则该处为 ...
- [agc015c]nuske vs phantom thnook
题意: 有一个n*m的网格图,每个格子是蓝色或白色.四相邻的两个格子连一条边,保证蓝格子构成一个森林. 有q组询问,每次询问给出一个矩形,问矩形内蓝格子组成的联通块个数. $1\leq n,m\leq ...
- Atcoder C - Nuske vs Phantom Thnook(递推+思维)
题目链接:http://agc015.contest.atcoder.jp/tasks/agc015_c 题意:给一个n*m的格,蓝色的组成路径保证不成环,q个询问,计算指定矩形区域内蓝色连通块的个数 ...
- C - Nuske vs Phantom Thnook
题意:n*m矩阵,n,m<=2e3,矩阵中的1能走到相邻4个1上,0代表障碍,若两个1联通 则只有一条路径 q个询问,q<=2e5,每次询问一个子矩阵中有多少个连通分量? 同一个连通分量中 ...
- [NOIP2019模拟赛][AT2381] Nuske vs Phantom Thnook
题目链接 评测姬好快啊(港记号?)暴力40pts变成60pts 因为题目说了保证蓝色点两两之间只有一条路径,所以肯定组成了一棵树,而对于每次询问的x1,y1,x2,y2的子矩阵中就存在着一个森林 不难 ...
- 「AT2381 [AGC015C] Nuske vs Phantom Thnook」
题目大意 给出一个01矩阵,这个矩阵有一个特殊的性质: 对于任意两个 \(1\) 之间最多只有 \(1\) 条由 \(1\) 构成的路径.每次询问给出一个矩形范围,查询在这个范围内的联通快个数. 分析 ...
随机推荐
- 微信小程序 - bindcontroltap和control的关系(map)
听说最近要废弃control,用cover-image和cover-view替代它,层级问题(我们此等萌新们还在想图标怎么显示在地图上(-.-)) 粗略的来说,一个展示(control),一个触发(b ...
- SSH框架阶段 ——SSH的优缺点,使用场景?
Hibernate优点: (1) 对象/关系数据库映射(ORM)它使用时只需要操纵对象,使开发更对象化,抛弃了数据库中心的思想,完全的面向对象思想(2) 透明持久化(persistent)带有持久化状 ...
- Jmeter-性能测试(三)
一.调通脚本(以json串Post接口为例)添加聚合报告(线程组->添加->监听器->聚合报告)并调试好需要压测的脚本,如下已经调通的P_C_B151就是我需要压测的脚本 二.设置场 ...
- MATLAB 的运算符
在MATLAB中,提供了丰富的运算符,运算主要包括算数运算.关系运算和逻辑运算. 一.算数运算符 分为标量和数组运算和矩阵运算.需要注意:对于a/b,是a除以b,对于a\b,是b除以a.在MATLAB ...
- lucene ParallelMultiSearcher与MultiSearcher的区别
http://www.cnblogs.com/twilight/archive/2009/10/09/1579793.html ParallelMultiSearcher与MultiSearcher的 ...
- Python课程之字典
字典(dict) 一.定义:字典类型在其他语言中又称为map,是一种映射类型,并且{key:value}无序,其关键字必须为不可变类型(如:元组/字符串),在同一个字典中关键字必须互不相同(若出现相同 ...
- Angularjs学习笔记1_基本技巧
10.AngularJS ng-click <button ng-click="clickCounter = clickCounter + 1">Click Me! ...
- 在ubuntu下安装ns2-allinone-2.35.tar.gz
1.软件下载 首先先下载ns-allinone-2.35.tar.gz (下载路径http://sourceforge.net/projects/nsnam/files/),将其放到你/home/my ...
- redhat5.8下oracle11g启动失败
# redhat5.8下oracle11g启动失败 ### 日志文件路径-----------------------------tail -f /u01/app/oracle/product/11. ...
- char *strrchr使用
/* 这个函数用到的少 这次用到记录一下 */ /* 函数原型: char *strrchr(const char *str, char c) * 功能: 找到字符c在字符串str中最后出现的位置,返 ...