教育我们做Rabin-Karp的时候一定要把模数取大?还是上溢好了。

#include<cstdio>
#include<cstdlib>
using namespace std;
int main()
{
puts("100000 13");
for(int i=1;i<=100000;i++) putchar(rand()%26+'a');
puts("");
return 0;
}

【字符串哈希】bzoj3098 Hash Killer II的更多相关文章

  1. BZOJ3098 Hash Killer II

    Description 这天天气不错,hzhwcmhf神犇给VFleaKing出了一道题: 给你一个长度为N的字符串S,求有多少个不同的长度为L的子串. 子串的定义是S[l].S[l + 1].... ...

  2. BZOJ3098: Hash Killer II(构造)

    Time Limit: 5 Sec  Memory Limit: 128 MBSec  Special JudgeSubmit: 2162  Solved: 1140[Submit][Status][ ...

  3. [BZOJ3098]Hash Killer II解题报告

    这天天气不错,hzhwcmhf神犇给VFleaKing出了一道题:给你一个长度为N的字符串S,求有多少个不同的长度为L的子串.子串的定义是S[l].S[l + 1].... S[r]这样连续的一段.两 ...

  4. bzoj3098 Hash Killer II 生日共计

    题目传送门 题目大意: 让你构造一个字符串,使字符串在题目给出的哈希条件下统计出错. 思路:生日攻击,结论题,尚未理解. #include<bits/stdc++.h> #define C ...

  5. BZOJ3098 Hash Killer II 【概率】

    挺有意思的一题 就是卡一个\(hash\) 我们先取L大概几十保证结果会超出\(10^9 + 7\) 然后就随机输出\(10^5\)个字符 由题目的提示我们可以想到,如果我们有\(n\)个数,选\(k ...

  6. 【BZOJ3098】 Hash Killer II

    BZOJ3098 Hash Killer II Solution 这道题目好像题面里面给了提示(当然没给就有点难想了.) 曾经讲过一个叫做生日悖论的,不知道还有多少人记得 考虑相同的可能性大概是\(\ ...

  7. 3098: Hash Killer II

    3098: Hash Killer II Time Limit: 5 Sec  Memory Limit: 128 MBSec  Special JudgeSubmit: 1219  Solved:  ...

  8. BZOJ 3098: Hash Killer II(新生必做的水题)

    3098: Hash Killer II Time Limit: 5 Sec  Memory Limit: 128 MBSec  Special JudgeSubmit: 1555  Solved: ...

  9. BZOJ 3098 Hash Killer II

    3098: Hash Killer II Description 这天天气不错,hzhwcmhf神犇给VFleaKing出了一道题: 给你一个长度为N的字符串S,求有多少个不同的长度为L的子串. 子串 ...

随机推荐

  1. OSI 七层模型和 TCP/IP 四层模型 及 相关网络协议

    简介 OSI 是理论上的模型,也就是一个统一的国际标准,现在的很多网络设备或者是网络协议都不同程度的精简了自己的所谓的模型,那么他们为了自己的通讯兼容都会参考这个OSI模型 TCP/IP 包括: TC ...

  2. Create a conditional DNS forwarder on our domain.com to Amazon default DNS provider

    Backgroup: I have an AWS Managed Active Directory(domain.com). I created a DHCP options set  to my d ...

  3. Python爬虫学习笔记之抓取猫眼的排行榜

    代码: import json import requests from requests.exceptions import RequestException import re import ti ...

  4. [BZOJ1982][POJ1740][Spoj 2021]Moving Pebbles|解题报告

    这道题的题意BZ和POJ上的都不大清楚... 大概就是给出n堆石子,以及初始每堆石子的个数 两个玩家交替操作,每个操作可以任意在一堆中取任意多的石子 然后再从这堆里拿若干个石子放到某个当前还存在的堆里 ...

  5. BestCoder Round #39 解题报告

    现场只做出前三题w 不过不管怎样这既是第一次认真打BC 又是第一次体验用在线编译器调代码 订正最后一题花了今天一整个下午(呜呜 收获还是比较大的^_^ Delete wld有n个数(a1,a2,... ...

  6. swift中_的用法,忽略默认参数名。

    swift中默认参数名除了第一个之外,其他的默认是不忽略的,但是如果在参数的名字前面加上_,就可以忽略这个参数名了,虽然有些麻烦,但是这种定义也挺好,而且不想知道名字或者不想让别人知道名字的或者不用让 ...

  7. 平衡树之splay讲解

    首先来说是splay是二叉搜索树,它可以说是线段树和SBT的综合,更可以解决一些二者解决不了的问题,splay几乎所有的操作都是由splay这一操作完成的,在介绍这一操作前我们先介绍几个概念和定义 二 ...

  8. wiki 2490 导弹拦截塔

    2013-09-23 21:16 二分答案+匈牙利判断 对于每一个时间,我们重新建一张二分图,由于每个塔可能打多次,所以要拆点, 对于每个拆的点的可行飞行距离为(mid-t1)-(ll-1)*(t1+ ...

  9. KVM基本概念

    在kvm技术中,应用到的两个东西:qemu和kvm.其中kvm负责cpu虚拟化和内存虚拟化,但是kvm不能模拟其他设备,qemu是模拟IO设备(网卡,磁盘),kvm加上qemu之后就能实现真正意义上的 ...

  10. Linux下查看使用的是哪种shell的方法汇总【转】

    转自:http://www.jb51.net/LINUXjishu/247797.html 查看当前发行版可以使用的shell 复制代码 代码如下: [root@localhost ~]$ cat / ...