Discription

Farmer John is hosting a tennis tournament with his n cows. Each cow has a skill level si, and no two cows having the same skill level. Every cow plays every other cow exactly once in the tournament, and each cow beats every cow with skill level lower than its own.

However, Farmer John thinks the tournament will be demoralizing for the weakest cows who lose most or all of their matches, so he wants to flip some of the results. In particular, at k different instances, he will take two integers ai, bi (ai < bi) and flip all the results between cows with skill level between ai and bi inclusive. That is, for any pair x, y  he will change the result of the match on the final scoreboard (so if x won the match, the scoreboard will now display that ywon the match, and vice versa). It is possible that Farmer John will change the result of a match multiple times. It is not guaranteed that ai and bi are equal to some cow's skill level.

Farmer John wants to determine how balanced he made the tournament results look. In particular, he wants to count the number of triples of cows (p, q, r) for which the final leaderboard shows that cow p beats cow q, cow q beats cow r, and cow r beats cow p. Help him determine this number.

Note that two triples are considered different if they do not contain the same set of cows (i.e. if there is a cow in one triple that is not in the other).

Input

On the first line are two space-separated integers, n and k (3 ≤ n ≤ 105; 0 ≤ k ≤ 105). On the next line are n space-separated distinct integers, s1, s2, ..., sn (1 ≤ si ≤ 109), denoting the skill levels of the cows. On the next k lines are two space separated integers, ai and bi (1 ≤ ai < bi ≤ 109) representing the changes Farmer John made to the scoreboard in the order he makes it.

Output

A single integer, containing the number of triples of cows (p, q, r) for which the final leaderboard shows that cow p beats cow q, cow q beats cow r, and cow r beats cow p.

Please do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use the cin, cout streams or the %I64d specifier.

Examples

Input
3 2
1 2 3
1 2
2 3
Output
1
Input
5 3
5 9 4 1 7
1 7
2 8
3 9
Output
3

Note

In the first sample, cow 3 > cow 1, cow 3 > cow 2, and cow 2 > cow 1. However, the results between cows 1 and 2 and cows 2 and 3 are flipped, so now FJ's results show that cow 1 > cow 2, cow 2 > cow 3, and cow 3 > cow 1, so cows 1, 2, and 3 form a balanced triple.

jzh大佬给学弟学妹们讲课的课件里,唯一一个不是弱智题的就是这个了2333,然鹅一找原题,mdzz数据范围后面加了俩0,有毒。。。

如果n<=1000的话,我们可以很容易的用差分去维护区间覆盖的问题,然后暴力计算每两个牛之间的比赛结果就好了。。。

所以n<=1e5怎么做呢??

我们只要先求出每个人最后赢的场数,就可以直接算出不合法的三元组数量,再用C(n,3)减去这个就是答案了。

那么如何快速计算每个人赢的场数呢?

考虑扫描线,把修改存在vector里,先倒着扫一遍,查询s[j] < s[i] 且 i赢j的个数;再倒着扫一遍,。。。。把修改看成区间异或,查询看成区间1的个数,然后这就是基本线段树操作了23333

#include<bits/stdc++.h>
#define ll long long
using namespace std;
#define pb push_back
#define lc (o<<1)
#define mid (l+r>>1)
#define rc ((o<<1)|1)
const int maxn=100005;
vector<int> L[maxn],R[maxn];
int a[maxn],n,num[maxn],k,X,Y,len[maxn*4];
int win[maxn],le,ri,sum[maxn*4],tag[maxn*4],w;
ll ans=0; inline void maintain(int o){ sum[o]=sum[lc]+sum[rc];} inline void work(int o){ tag[o]^=1,sum[o]=len[o]-sum[o];} inline void pushdown(int o){
if(tag[o]){
tag[o]=0;
work(lc),work(rc);
}
} void build(int o,int l,int r){
len[o]=r-l+1;
if(l==r){ sum[o]=1; return;}
build(lc,l,mid);
build(rc,mid+1,r);
maintain(o);
} void update(int o,int l,int r){
if(l>=le&&r<=ri){ work(o); return;}
pushdown(o);
if(le<=mid) update(lc,l,mid);
if(ri>mid) update(rc,mid+1,r);
maintain(o);
} void query(int o,int l,int r){
if(l>=le&&r<=ri){ w+=sum[o]; return;}
pushdown(o);
if(le<=mid) query(lc,l,mid);
if(ri>mid) query(rc,mid+1,r);
} inline void solve(){
build(1,1,n); for(int i=n;i;i--){
ri=i; for(int j=L[i].size()-1;j>=0;j--) le=L[i][j],update(1,1,n); w=0,le=1,ri=i-1;
if(le<=ri) query(1,1,n);
win[i]+=w; // cout<<i<<' '<<w<<endl;
} memset(sum,0,sizeof(sum));
memset(tag,0,sizeof(tag)); for(int i=1;i<=n;i++){
le=i;
for(int j=R[i].size()-1;j>=0;j--) ri=R[i][j],update(1,1,n); w=0,le=i+1,ri=n;
if(le<=ri) query(1,1,n);
win[i]+=w; // cout<<i<<' '<<win[i]<<endl;
} for(int i=1;i<=n;i++) ans-=win[i]*(ll)(win[i]-1)>>1;
} int main(){
scanf("%d%d",&n,&k);
for(int i=1;i<=n;i++) scanf("%d",a+i),num[i]=a[i]; sort(num+1,num+n+1);
// unique(num+1,num+n+1);
for(int i=1;i<=n;i++) a[i]=lower_bound(num+1,num+n+1,a[i])-num; while(k--){
scanf("%d%d",&X,&Y);
X=lower_bound(num+1,num+n+1,X)-num;
Y=upper_bound(num+1,num+n+1,Y)-num-1; if(!X||!Y) continue; L[Y].pb(X),R[X].pb(Y);
} ans=n*(ll)(n-1)*(ll)(n-2)/6ll,solve(); cout<<ans<<endl; return 0;
}

  

CodeForces - 283E Cow Tennis Tournament的更多相关文章

  1. 283E&EZOJ #89 Cow Tennis Tournament

    传送门 分析 我们考虑用所有的情况减去不合法的情况 不难想出所有情况为$C_n^3$ 于是我们考虑不合法的情况 我们知道对于一个不合法的三元组$(a,b,c)$一定是修改后$a<b,b>c ...

  2. Educational Codeforces Round 8 A. Tennis Tournament 暴力

    A. Tennis Tournament 题目连接: http://www.codeforces.com/contest/628/problem/A Description A tennis tour ...

  3. Codeforces CF#628 Education 8 A. Tennis Tournament

    A. Tennis Tournament time limit per test 1 second memory limit per test 256 megabytes input standard ...

  4. CF 628A --- Tennis Tournament --- 水题

    CF 628A 题目大意:给定n,b,p,其中n为进行比赛的人数,b为每场进行比赛的每一位运动员需要的水的数量, p为整个赛程提供给每位运动员的毛巾数量, 每次在剩余的n人数中,挑选2^k=m(m & ...

  5. Codeforces 678E. Another Sith Tournament(概率DP,状压)

    Codeforces 678E. Another Sith Tournament 题意: n(n<=18)个人打擂台赛,给定任意两人对决的胜负概率,比赛规则:可指定一人作为最开始的擂主,每次可指 ...

  6. Codeforces Educational Codeforces Round 8 A. Tennis Tournament

    大致题意: 网球比赛,n个參赛者,每场比赛每位选手b瓶水+裁判1瓶水,所有比赛每一个參赛者p条毛巾 每一轮比赛有2^k个人參加比赛(k为2^k<=n中k的最大值),下一轮晋级人数是本轮每场比赛的 ...

  7. Codeforces 735C:Tennis Championship(数学+贪心)

    http://codeforces.com/problemset/problem/735/C 题意:有n个人打锦标赛,淘汰赛制度,即一个人和另一个人打,输的一方出局.问这n个人里面冠军最多能赢多少场, ...

  8. CodeForces - 1209D Cow and Snacks 并查集

    CodeForces - 1209D 题意 现在n种点心,每种点心只有一份,有k位客人,每位客人有两种想要吃的点心,你可以安排他们进场的顺序,每位客人会吃掉所有他想要吃的,并且还没被吃掉的点心.如果客 ...

  9. codeforces 678E Another Sith Tournament 概率dp

    奉上官方题解 然后直接写的记忆化搜索 #include <cstdio> #include <iostream> #include <ctime> #include ...

随机推荐

  1. 如何在数据访问层上提高js的执行效率

    本文讲到的是如何从数据访问层面上提高JS 代码的执行效率.总的来讲有以下几条原则: 函数中读写局部变量总是最快的,而全局变量的读取则是最慢的: 尽可能地少用with 语句,因为它会增加with 语句以 ...

  2. Java 中request.getInputStream()和BufferedReader 和 InputStreamReader 用法

    关于request.getInputStream(): http://www.cnblogs.com/steve-cnblogs/articles/5420198.html 浏览器 采用了一种编码方式 ...

  3. event对象和事件冒泡

    <!DOCTYPE HTML><html><head> <meta charset="utf-8"> <title>无标 ...

  4. 动态规划:LCS

    先上状态转移方程,还是很容易看明白的 例题是Codevs的1862,这个题不是实现了方程就可以了的,还要完成一个事情那就是计数,数一数到底有多少个最长公共子序列 #include<cstdio& ...

  5. php中的split函数

    字符串分割函数:split函数 <?php $email='microsoft@exam!ple.com'; $domain = split('\.|@|!',$email);//split分割 ...

  6. MyBatis系列二 之 数据库列名于程序实体类中字段名称不一致

    MyBatis系列二  之   数据库列名于程序实体类中字段名称不一致 情景:当数据库中的列名与我们程序实体类中的字段名称不一致         使用ResultMap节点配置信息  在映射文件中  ...

  7. python面向对象——类和对象

    一.三大编程范式 编程范式即编程的方法论,标识一种编程风格 三大编程范式: 1.面向过程编程(流水线式) 优点:极大的降低了程序的复杂度 缺点:应用场景固定住了,可扩展性差 2.函数式编程 特点: a ...

  8. python发布包到pypi的踩坑记录

    前言 突然想玩玩python了^_^ 这篇博文记录了我打算发布包到pypi的踩坑经历.python更新太快了,甚至连这种发布上传机制都在不断的更新,这导致网上的一些关于python发布上传到pypi的 ...

  9. fullpage.js jq全屏滚动插件

    fullPage.js和fullPage都能实现全屏滚动,二者区别是:fullPage.js需依赖于JQuery库,而fullPage不需要依赖任何一个js库,可以单独使用. (代码演示效果并且可以下 ...

  10. sql 获取字符串首字母,循环

    //字符串首字母 CREATE FUNCTION GetInitialLetter(@ChineseString NVARCHAR()) RETURNS NVARCHAR() AS BEGIN DEC ...