题目链接

这题出的有点nb,PKU: Pig Kingdom University , NOIP: National Olympics in Informatic of Pigs。。。

题意:求\(G^{\sum_{d|n}C_n^d}mod\ 999911659\)

根据费马小定理的推论,题目可以转化为求\(G^{\sum_{d|n}C_n^dmod999911658}mod\ 999911659\)

对\(999911658\)分解质因数可得\(999911658=2\times3\times4679\times35617\)

枚举这4个数,再枚举\(n\)的因子\(d\),预处理阶乘和逆元,用Lucas定理求出\(\sum_{d|n}C_n^d\),最后用中国剩余定理合并就行了。

#include <cstdio>
#include <cstdlib>
#include <cmath>
typedef long long ll;
const int MAXN = 40000; // The Biggest Prime
const int MOD = 999911659;
const int MO = 999911658;
const int prime[6] = {233, 2, 3, 4679, 35617};
const int M = 4;
int n, q;
int fact[MAXN], inv[MAXN], a[M + 2], t[M + 2];
int C(int n, int m, int mod){
if(n < m) return 0;
return fact[n] * inv[fact[m]] % mod * inv[fact[n - m]] % mod;
}
int Lucas(int n, int m, int mod){
if(!m) return 1;
return C(n % mod, m % mod, mod) * Lucas(n / mod, m / mod, mod) % mod;
}
int Pow(int q, int k, int mod){
int ans = 1;
while(k){
if(k & 1) ans = ((long long)ans * q) % mod;
k >>= 1;
q = (long long)q * q % mod;
}
return ans;
}
int Crt(int a[]){
int ans = 0;
for(int i = 1; i <= M; ++i){
int tmp = MOD / prime[i];
ans = ((long long)ans + (long long)a[i] * tmp % MO * Pow(tmp, prime[i] - 2, prime[i])) % MO;
}
return ans;
}
int main(){
scanf("%d%d", &n, &q);
if(q % MOD == 0){
printf("0\n");
return 0;
}
inv[1] = 1;
fact[1] = 1;
fact[0] = 1;
for(int i = 1; i <= M; ++i){
for(int j = 2; j <= prime[i]; ++j)
fact[j] = (fact[j - 1] * j) % prime[i], inv[j] = (prime[i] - prime[i] / j) * inv[prime[i] % j] % prime[i];
for(int d = 1; d * d <= n; ++d){
if(n % d) continue;
a[i] = (a[i] + Lucas(n, d, prime[i])) % prime[i];
if(d * d == n) continue;
a[i] = (a[i] + Lucas(n, n / d, prime[i])) % prime[i];
}
}
printf("%d\n", Pow(q, Crt(a), MOD));
return 0;
}

【洛谷 P2480】 [SDOI2010]古代猪文(中国剩余定理,Lucas定理)的更多相关文章

  1. 洛谷P2480 [SDOI2010]古代猪文(费马小定理,卢卡斯定理,中国剩余定理,线性筛)

    洛谷题目传送门 蒟蒻惊叹于一道小小的数论题竟能涉及这么多知识点!不过,掌握了这些知识点,拿下这道题也并非难事. 题意一行就能写下来: 给定\(N,G\),求\(G^{\sum \limits _{d| ...

  2. 洛谷 P2480 [SDOI2010]古代猪文 解题报告

    P2480 [SDOI2010]古代猪文 题目背景 "在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心--" ...

  3. 洛谷 P2480 [SDOI2010]古代猪文 题解【欧拉定理】【CRT】【Lucas定理】

    数论综合题. 题目背景 题目背景与题目无关因此省略.题目链接 题目描述 猪王国的文明源远流长,博大精深. iPig 在大肥猪学校图书馆中查阅资料,得知远古时期猪文文字总个数为 \(N\).当然,一种语 ...

  4. 洛谷P2480 [SDOI2010]古代猪文(卢卡斯定理+中国剩余定理)

    传送门 好吧我数学差的好像不是一点半点…… 题目求的是$G^{\sum_{d|n}C^d_n}mod\ 999911659$ 我们可以利用费马小定理$a^{k}\equiv a^{k\ mod\ (p ...

  5. 洛谷P2480 [SDOI2010]古代猪文

    要求(图是盗来的QAQ) 首先用欧拉定理把幂模一下,直接就是MOD-1了 然后发现MOD-1可以分解为2,3,4679,35617,都是质数,可以直接用Lucas定理 然后用中国剩余定理合并一下即可 ...

  6. 洛咕 P2480 [SDOI2010]古代猪文

    洛咕 P2480 [SDOI2010]古代猪文 题目是要求\(G^{\sum_{d|n}C^d_n}\). 用费马小定理\(G^{\sum_{d|n}C^d_n\text{mod 999911658} ...

  7. 【bzoj1951】: [Sdoi2010]古代猪文 数论-中国剩余定理-Lucas定理

    [bzoj1951]: [Sdoi2010]古代猪文 因为999911659是个素数 欧拉定理得 然后指数上中国剩余定理 然后分别lucas定理就好了 注意G==P的时候的特判 /* http://w ...

  8. 【洛谷P2480】古代猪文

    题目大意:求 \[ G^{\sum\limits_{d|N}\binom{n}{k}} mod\ \ 999911659 \] 题解:卢卡斯定理+中国剩余定理 利用卢卡斯定理求出指数和式对各个素模数的 ...

  9. 【题解】P2480 [SDOI2010]古代猪文 - 卢卡斯定理 - 中国剩余定理

    P2480 [SDOI2010]古代猪文 声明:本博客所有题解都参照了网络资料或其他博客,仅为博主想加深理解而写,如有疑问欢迎与博主讨论✧。٩(ˊᗜˋ)و✧*。 题目描述 猪王国的文明源远流长,博大精 ...

  10. P2480 [SDOI2010]古代猪文

    P2480 [SDOI2010]古代猪文 比较综合的一题 前置:Lucas 定理,crt 求的是: \[g^x\bmod 999911659,\text{其中}x=\sum_{d\mid n}\tbi ...

随机推荐

  1. redis学习资料汇总

    redis学习资料汇总 2017年01月07日 22:10:37 阅读数:281 转载:http://blog.csdn.net/wtyvhreal/article/details/50427627 ...

  2. 小白学习mysql 之 innodb locks

    Innodb 锁类型: Shared and Exclusive Locks Intention Locks Record Locks Gap Locks Next-Key Locks Insert ...

  3. 玩转Vim-札记(二)

    玩转Vim-札记(二) 距上篇博文已有一周有余,上次主要介绍了编辑器之神Vim的起源.安装并介绍了两种模式以及一些简单的操作.本次将继续对Vim的使用进行介绍. 登堂入室 首先接着说移动吧: 0 → ...

  4. linux中wget 、apt-get、yum rpm区别

    wget 类似于迅雷,是一种下载工具, 通过HTTP.HTTPS.FTP三个最常见的TCP/IP协议下载,并可以使用HTTP代理名字是World Wide Web”与“get”的结合. yum: 是r ...

  5. Linux下创建pycharm的快捷方式

    第一步:创建桌面快捷方式文件Pycharm.desktop,并打开 sudo gedit /usr/share/applications/Pycharm.desktop 第二步:在打开的文件Pycha ...

  6. 10-Mysql数据库----数据的增删改

    本节重点: 插入数据 INSERT 更新数据 UPDATE 删除数据 DELETE 再来回顾一下之前我们练过的一些操作,相信大家都对插入数据.更新数据.删除数据有了全面的认识.那么在mysql中其实最 ...

  7. 1030 Travel Plan (30 分)(最短路径 and dfs)

    #include<bits/stdc++.h> using namespace std; ; const int inf=0x3f3f3f3f; int mp[N][N]; bool vi ...

  8. 关于Scala文件操作中出现的问题

    在各种项目中,我们常常需要用到文件操作,笔者在近期的项目中遇到了一个与文件操作相关的问题. 在代码实现的过程中,笔者首先定义了一个文件路径:def PATH = "/a/b/c.txt&qu ...

  9. Java作业09-异常

    6. 为如下代码加上异常处理 byte[] content = null; FileInputStream fis = new FileInputStream("testfis.txt&qu ...

  10. linux服务器su之后变成bash-4.1#

    当前为root权限 cd /home/jboss 执行如下命令,将缺失的配置文件拷贝到指定位置即可 cp ./.bashrc /root cp ./.bash_profile /root 然后切换账号 ...