【洛谷 P2480】 [SDOI2010]古代猪文(中国剩余定理,Lucas定理)
这题出的有点nb,PKU: Pig Kingdom University , NOIP: National Olympics in Informatic of Pigs。。。
题意:求\(G^{\sum_{d|n}C_n^d}mod\ 999911659\)
根据费马小定理的推论,题目可以转化为求\(G^{\sum_{d|n}C_n^dmod999911658}mod\ 999911659\)
对\(999911658\)分解质因数可得\(999911658=2\times3\times4679\times35617\)
枚举这4个数,再枚举\(n\)的因子\(d\),预处理阶乘和逆元,用Lucas定理求出\(\sum_{d|n}C_n^d\),最后用中国剩余定理合并就行了。
#include <cstdio>
#include <cstdlib>
#include <cmath>
typedef long long ll;
const int MAXN = 40000; // The Biggest Prime
const int MOD = 999911659;
const int MO = 999911658;
const int prime[6] = {233, 2, 3, 4679, 35617};
const int M = 4;
int n, q;
int fact[MAXN], inv[MAXN], a[M + 2], t[M + 2];
int C(int n, int m, int mod){
if(n < m) return 0;
return fact[n] * inv[fact[m]] % mod * inv[fact[n - m]] % mod;
}
int Lucas(int n, int m, int mod){
if(!m) return 1;
return C(n % mod, m % mod, mod) * Lucas(n / mod, m / mod, mod) % mod;
}
int Pow(int q, int k, int mod){
int ans = 1;
while(k){
if(k & 1) ans = ((long long)ans * q) % mod;
k >>= 1;
q = (long long)q * q % mod;
}
return ans;
}
int Crt(int a[]){
int ans = 0;
for(int i = 1; i <= M; ++i){
int tmp = MOD / prime[i];
ans = ((long long)ans + (long long)a[i] * tmp % MO * Pow(tmp, prime[i] - 2, prime[i])) % MO;
}
return ans;
}
int main(){
scanf("%d%d", &n, &q);
if(q % MOD == 0){
printf("0\n");
return 0;
}
inv[1] = 1;
fact[1] = 1;
fact[0] = 1;
for(int i = 1; i <= M; ++i){
for(int j = 2; j <= prime[i]; ++j)
fact[j] = (fact[j - 1] * j) % prime[i], inv[j] = (prime[i] - prime[i] / j) * inv[prime[i] % j] % prime[i];
for(int d = 1; d * d <= n; ++d){
if(n % d) continue;
a[i] = (a[i] + Lucas(n, d, prime[i])) % prime[i];
if(d * d == n) continue;
a[i] = (a[i] + Lucas(n, n / d, prime[i])) % prime[i];
}
}
printf("%d\n", Pow(q, Crt(a), MOD));
return 0;
}
【洛谷 P2480】 [SDOI2010]古代猪文(中国剩余定理,Lucas定理)的更多相关文章
- 洛谷P2480 [SDOI2010]古代猪文(费马小定理,卢卡斯定理,中国剩余定理,线性筛)
洛谷题目传送门 蒟蒻惊叹于一道小小的数论题竟能涉及这么多知识点!不过,掌握了这些知识点,拿下这道题也并非难事. 题意一行就能写下来: 给定\(N,G\),求\(G^{\sum \limits _{d| ...
- 洛谷 P2480 [SDOI2010]古代猪文 解题报告
P2480 [SDOI2010]古代猪文 题目背景 "在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心--" ...
- 洛谷 P2480 [SDOI2010]古代猪文 题解【欧拉定理】【CRT】【Lucas定理】
数论综合题. 题目背景 题目背景与题目无关因此省略.题目链接 题目描述 猪王国的文明源远流长,博大精深. iPig 在大肥猪学校图书馆中查阅资料,得知远古时期猪文文字总个数为 \(N\).当然,一种语 ...
- 洛谷P2480 [SDOI2010]古代猪文(卢卡斯定理+中国剩余定理)
传送门 好吧我数学差的好像不是一点半点…… 题目求的是$G^{\sum_{d|n}C^d_n}mod\ 999911659$ 我们可以利用费马小定理$a^{k}\equiv a^{k\ mod\ (p ...
- 洛谷P2480 [SDOI2010]古代猪文
要求(图是盗来的QAQ) 首先用欧拉定理把幂模一下,直接就是MOD-1了 然后发现MOD-1可以分解为2,3,4679,35617,都是质数,可以直接用Lucas定理 然后用中国剩余定理合并一下即可 ...
- 洛咕 P2480 [SDOI2010]古代猪文
洛咕 P2480 [SDOI2010]古代猪文 题目是要求\(G^{\sum_{d|n}C^d_n}\). 用费马小定理\(G^{\sum_{d|n}C^d_n\text{mod 999911658} ...
- 【bzoj1951】: [Sdoi2010]古代猪文 数论-中国剩余定理-Lucas定理
[bzoj1951]: [Sdoi2010]古代猪文 因为999911659是个素数 欧拉定理得 然后指数上中国剩余定理 然后分别lucas定理就好了 注意G==P的时候的特判 /* http://w ...
- 【洛谷P2480】古代猪文
题目大意:求 \[ G^{\sum\limits_{d|N}\binom{n}{k}} mod\ \ 999911659 \] 题解:卢卡斯定理+中国剩余定理 利用卢卡斯定理求出指数和式对各个素模数的 ...
- 【题解】P2480 [SDOI2010]古代猪文 - 卢卡斯定理 - 中国剩余定理
P2480 [SDOI2010]古代猪文 声明:本博客所有题解都参照了网络资料或其他博客,仅为博主想加深理解而写,如有疑问欢迎与博主讨论✧。٩(ˊᗜˋ)و✧*。 题目描述 猪王国的文明源远流长,博大精 ...
- P2480 [SDOI2010]古代猪文
P2480 [SDOI2010]古代猪文 比较综合的一题 前置:Lucas 定理,crt 求的是: \[g^x\bmod 999911659,\text{其中}x=\sum_{d\mid n}\tbi ...
随机推荐
- Git 相关工具及教程地址
一.Git GUI 客户端 Git 客户端下载(Windows) TortoiseGit 客户端下载(Windows) Sourcetree 客户端下载(Windows.Mac) Git Extens ...
- jmeter☞文件目录(一)
Jmeter的文件目录如下图: 1.bin:可执行文件目录 a.jmeter.bat:Windows环境下的启动文件 b.jmeter.log:日志文件 c.jmeter.sh:Linux环境下的启动 ...
- Linux服务架设篇--ping命令
工作原理: 向远程机发送包含一定字节数的ICMP数据包,如果能收到对方的回复的数据包,就表明网络是相通的,而且根据两个数据包的时间差,还可以知道相互之间网络链接的速度. 注意: 有些远程主机由于某种原 ...
- day-10 sklearn库实现SVM支持向量算法
学习了SVM分类器的简单原理,并调用sklearn库,对40个线性可分点进行训练,并绘制出图形画界面. 一.问题引入 如下图所示,在x,y坐标轴上,我们绘制3个点A(1,1),B(2,0),C(2,3 ...
- Hyperledger04
代码 'use strict'; var Fabric_Client = require('fabric-client'); var path = require('path'); var util ...
- lintcode-106-排序列表转换为二分查找树
106-排序列表转换为二分查找树 给出一个所有元素以升序排序的单链表,将它转换成一棵高度平衡的二分查找树 样例 标签 递归 链表 思路 类似于二分查找,每次将链表二分,中间节点作为根节点,在建立左子树 ...
- lintcode-45-最大子数组差
45-最大子数组差 给定一个整数数组,找出两个不重叠的子数组A和B,使两个子数组和的差的绝对值|SUM(A) - SUM(B)|最大. 返回这个最大的差值. 注意事项 子数组最少包含一个数 样例 给出 ...
- Laravel 5 如何实现网站在维护模式下允许指定 IP 用户访问(白名单)
为了测试需要,有时候需要在网站处于维护模式下允许特定IP访问网站,在 Laravel 中,这可以通过为维护模式编写自定义中间件来实现. 默认情况下,Laravel 使用 CheckForMainten ...
- 使用window.getSelection()获取div中选中文字内容及位置
div添加一个弹出事件: $(document).ready(function () { $("#marked-area").mouseup(function (e) { $sco ...
- golang and intellij
有一个项目,混合了java和go,需要在intellij中安装go的插件. OK,网上的信息简直混乱不堪,两个流派,一个流派就是装插件,一个流派就是编译插件,各种折腾,还是安装不了,谁知柳暗花明又一村 ...