利用pandas进行数据分析之一:pandas数据结构Series
Series是一种类似于一维数组的对象,又一组数据(各种Numpy数据类型)以及一组与之相关的数据标签(即是索引)组成。
可以将Series看成是一个定长的有序字段,因为它是索引值到数据值的一个映射。
import pandas as pd
>>>obj=pd.Series([4,5,6,7])#仅由一组数据(列表,元组)即可产生最简单的Series,索引自动生成,从0开始,可以通过values和index属性获取其数组的表示形式和索引对象
>>> obj
0 4
1 5
2 6
3 7
>>>obj=pd.Series([4,5,6,7],index=list('abcd')):#(可以是列表、元组、字典)
>>> obj
a 4
b 5
c 6
d 7
>>> obj[:2]#切片获取值和索引,同时可以对值做修改
a 4
b 5
>>> obj['a']#通过索引获取单个或者一组值 obj[['a','b']]
4
>>> obj[obj>5]#根据布尔值获取值
c 6
d 7
>>> obj.index #属性,可以通过赋值的方式就地修改
Index([u'a', u'b', u'c', u'd'], dtype='object')
>>> obj.values #属性,值,是数组形式
array([4, 5, 6, 7])
>>> obj.index=['a','b','d','e']#更改索引
>>> obj
a 4
b 5
d 6
e 7
>>>obj.name=' ' #属性
>>>obj.index.name=' '
>>>'b' in obj
>>> obj['d']=12 #修改值
>>> obj
a 4
b 5
d 12
e 7
>>> dirct={'salary':3000,'texas':2344}#如果只传入一个字典,则结果Series中的索引就是原字典的键
>>> obj2=pd.Series(dirct)
>>> obj2
salary 3000
texas 2344
>>> state=['salary','out']
>>> obj3=pd.Series(dirct,state)#索引和原来匹配的值灰白找出,无法对应的结果是NaN
>>> obj3
salary 3000.0
out NaN
>>> pd.isnull(obj3)#isnull用于检测是否有缺失值
salary False
out True
>>> obj2+obj3 #Series重要的功能:在算数计算中会自动对齐不同索引的数据
out NaN
salary 6000.0
texas NaN
利用pandas进行数据分析之一:pandas数据结构Series的更多相关文章
- 利用Python进行数据分析(7) pandas基础: Series和DataFrame的简单介绍
一.pandas 是什么 pandas 是基于 NumPy 的一个 Python 数据分析包,主要目的是为了数据分析.它提供了大量高级的数据结构和对数据处理的方法. pandas 有两个主要的数据结构 ...
- 利用Python进行数据分析(8) pandas基础: Series和DataFrame的基本操作
一.reindex() 方法:重新索引 针对 Series 重新索引指的是根据index参数重新进行排序. 如果传入的索引值在数据里不存在,则不会报错,而是添加缺失值的新行. 不想用缺失值,可以用 ...
- 利用Python进行数据分析(12) pandas基础: 数据合并
pandas 提供了三种主要方法可以对数据进行合并: pandas.merge()方法:数据库风格的合并: pandas.concat()方法:轴向连接,即沿着一条轴将多个对象堆叠到一起: 实例方法c ...
- 利用Python进行数据分析(9) pandas基础: 汇总统计和计算
pandas 对象拥有一些常用的数学和统计方法. 例如,sum() 方法,进行列小计: sum() 方法传入 axis=1 指定为横向汇总,即行小计: idxmax() 获取最大值对应的索 ...
- 利用python进行数据分析之pandas入门
转自https://zhuanlan.zhihu.com/p/26100976 目录: 5.1 pandas 的数据结构介绍5.1.1 Series5.1.2 DataFrame5.1.3索引对象5. ...
- 基于 Python 和 Pandas 的数据分析(2) --- Pandas 基础
在这个用 Python 和 Pandas 实现数据分析的教程中, 我们将明确一些 Pandas 基础知识. 加载到 Pandas Dataframe 的数据形式可以很多, 但是通常需要能形成行和列的数 ...
- 利用python进行数据分析3_Pandas的数据结构
Series #通过list构建Series ser_obj=pd.Series(range(10,20)) print(type(ser_obj))#<class 'pandas.core.s ...
- 利用Python进行数据分析(10) pandas基础: 处理缺失数据
数据不完整在数据分析的过程中很常见. pandas使用浮点值NaN表示浮点和非浮点数组里的缺失数据. pandas使用isnull()和notnull()函数来判断缺失情况. 对于缺失数据一般处理 ...
- 利用python进行数据分析之pandas库的应用(二)
本节介绍Series和DataFrame中的数据的基本手段 重新索引 pandas对象的一个重要方法就是reindex,作用是创建一个适应新索引的新对象 >>> from panda ...
- 利用python进行数据分析之pandas库的应用(一)
一.pandas的数据结构介绍 Series Series是由一种类似于一维数组的对象,它由一组数据以及一组与之相关的数据索引构成.仅由一组数据可产生最简单的Series. obj=Series([4 ...
随机推荐
- ThreadLocal深度解析
本文基于jdk1.8.0_66写成 0. ThreadLocal简介 ThreadLocal可以提供线程内的局部对象,合理的使用可以避免线程冲突的问题比方说SimpleDateFormat是线程不安全 ...
- 洛谷 P1182 数列分段`Section II`【二分答案】
[代码]: #include<bits/stdc++.h> const double eps = 1e-8; const int maxn = 1e6+5; #define inf 0x3 ...
- HDU 1556 Color the ball【差分数组裸题/模板】
N个气球排成一排,从左到右依次编号为1,2,3....N.每次给定2个整数a b(a <= b),lele便为骑上他的"小飞鸽"牌电动车从气球a开始到气球b依次给每个气球涂一 ...
- HDU 变形课 1181【DFS/BFS】
变形课 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/65536 K (Java/Others) Total Submissi ...
- [Lydsy1805月赛] 对称数
挺不错的一道数据结构题QWQ. 一开始发现这个题如果不看数据范围的话,妥妥的树上莫队啊23333,然鹅10组数据是不可能让你舒舒服服的树上莫队卡过的23333 于是想了想,这个题的模型就是,把u到v链 ...
- 【Floyd】【Dilworth定理】【最小路径覆盖】【匈牙利算法】bzoj1143 [CTSC2008]祭祀river
Dilworth定理,将最长反链转化为最小链覆盖.//貌似还能把最长上升子序列转化为不上升子序列的个数? floyd传递闭包,将可以重叠的最小链覆盖转化成不可重叠的最小路径覆盖.(引用:这样其实就是相 ...
- 【二分图】【最大匹配】【匈牙利算法】CODEVS 2776 寻找代表元
裸的匈牙利,存模板. #include<cstdio> #include<vector> #include<cstring> using namespace std ...
- Scala实战高手****第12课:Scala函数式编程进阶(匿名函数、高阶函数、函数类型推断、Currying)与Spark源码鉴赏
/** * 函数式编程进阶: * 1.函数和变量一样作为Scala语言的一等公民,函数可以直接赋值给变量 * 2.函数更常用的方式是匿名函数,定义的时候只需要说明输入参数的类型和函数体即可,不需要名称 ...
- js之对象(经典)
一.对象的定义: 对象是JavaScript的一个基本数据类型,是一种复合值,它将很多值(原始值或者其他对象)聚合在一起,可通过名字访问这些值.即属性的无序集合. 二.对象的创建(多种方法) 1.对象 ...
- htc支持CSS3
<!DOCTYPE html> <html lang="zh"> <head> <meta charset="UTF-8&quo ...