补充说明

left outer join where is not null与left semi join的联系与区别:两者均可实现exists in操作,不同的是,前者允许右表的字段在select或where子句中引用,而后者不允许。

除了left outer join,Hive QL中还有right outer join,其功能与前者相当,只不过左表和右表的角色刚好相反。

另外,Hive QL中没有left join、right join、full join以及right semi join等操作。

举例子:

hive> select * from zz0; 
111111 
222222 
888888 
hive> select * from zz1; 
111111 
333333 
444444 
888888

hive> select * from zz0 join zz1 on zz0.uid = zz1.uid; 
111111  111111 
888888  888888 
hive> select * from zz0 left outer join zz1 on zz0.uid = zz1.uid; 
111111  111111 
222222  NULL 
888888  888888 
hive> select * from zz0 right outer join zz1 on zz0.uid = zz1.uid; 
NULL 
111111  111111 
NULL    333333 
NULL    444444 
888888  888888 
hive> select * from zz0 full outer join zz1 on zz0.uid = zz1.uid; 
NULL 
111111  111111 
222222  NULL 
NULL    333333 
NULL    444444 
888888  888888 
hive> select * from zz0 left semi join zz1 on zz0.uid = zz1.uid; 
111111  111111 
888888  888888

写好Hive 程序的五个提示

使用Hive可以高效而又快速地编写复杂的MapReduce查询逻辑。但是某些情况下,因为不熟悉数据特性,或没有遵循Hive的优化约定,Hive计算任务会变得非常低效,甚至无法得到结果。一个”好”的Hive程序仍然需要对Hive运行机制有深入的了解。

有一些大家比较熟悉的优化约定包括:Join中需要将大表写在靠右的位置;尽量使用UDF而不是transfrom……诸如此类。下面讨论5个性能和逻辑相关的问题,帮助你写出更好的Hive程序。

全排序

Hive的排序关键字是SORT BY,它有意区别于传统数据库的ORDER BY也是为了强调两者的区别–SORT BY只能在单机范围内排序。考虑以下表定义:

CREATE TABLE if not exists t_order(

id int, -- 订单编号

sale_id int, -- 销售ID

customer_id int, -- 客户ID

product _id int, -- 产品ID

amount int -- 数量

) PARTITIONED BY (ds STRING);

在表中查询所有销售记录,并按照销售ID和数量排序:

set mapred.reduce.tasks=2;

Select sale_id, amount from t_order

Sort by sale_id, amount;

这一查询可能得到非期望的排序。指定的2个reducer分发到的数据可能是(各自排序):

Reducer1:

Sale_id | amount

0 | 100

1 | 30

1 | 50

2 | 20

Reducer2:

Sale_id | amount

0 | 110

0 | 120

3 | 50

4 | 20

因为上述查询没有reduce key,hive会生成随机数作为reduce key。这样的话输入记录也随机地被分发到不同reducer机器上去了。为了保证reducer之间没有重复的sale_id记录,可以使用DISTRIBUTE BY关键字指定分发key为sale_id。改造后的HQL如下:

set mapred.reduce.tasks=2;

Select sale_id, amount from t_order

Distribute by sale_id

Sort by sale_id, amount;

这样能够保证查询的销售记录集合中,销售ID对应的数量是正确排序的,但是销售ID不能正确排序,原因是hive使用hadoop默认的HashPartitioner分发数据。

这就涉及到一个全排序的问题。解决的办法无外乎两种:

1.) 不分发数据,使用单个reducer:

set mapred.reduce.tasks=1;

这一方法的缺陷在于reduce端成为了性能瓶颈,而且在数据量大的情况下一般都无法得到结果。但是实践中这仍然是最常用的方法,原因是通常排序的查询是为了得到排名靠前的若干结果,因此可以用limit子句大大减少数据量。使用limit n后,传输到reduce端(单机)的数据记录数就减少到n*(map个数)。

2.) 修改Partitioner,这种方法可以做到全排序。这里可以使用Hadoop自带的TotalOrderPartitioner(来自于Yahoo!的TeraSort项目),这是一个为了支持跨reducer分发有序数据开发的Partitioner,它需要一个SequenceFile格式的文件指定分发的数据区间。如果我们已经生成了这一文件(存储在/tmp/range_key_list,分成100个reducer),可以将上述查询改写为

set mapred.reduce.tasks=100;

set hive.mapred.partitioner=org.apache.hadoop.mapred.lib.TotalOrderPartitioner;

set total.order.partitioner.path=/tmp/ range_key_list;

Select sale_id, amount from t_order

Cluster by sale_id

Sort by amount;

有很多种方法生成这一区间文件(例如hadoop自带的o.a.h.mapreduce.lib.partition.InputSampler工具)。这里介绍用Hive生成的方法,例如有一个按id有序的t_sale表:

CREATE TABLE if not exists t_sale (

id int,

name string,

loc string

);

则生成按sale_id分发的区间文件的方法是:

create external table range_keys(sale_id int)

row format serde

'org.apache.hadoop.hive.serde2.binarysortable.BinarySortableSerDe'

stored as

inputformat

'org.apache.hadoop.mapred.TextInputFormat'

outputformat

'org.apache.hadoop.hive.ql.io.HiveNullValueSequenceFileOutputFormat'

location '/tmp/range_key_list';

 

insert overwrite table range_keys

select distinct sale_id

from source t_sale sampletable(BUCKET 100 OUT OF 100 ON rand()) s

sort by sale_id;

生成的文件(/tmp/range_key_list目录下)可以让TotalOrderPartitioner按sale_id有序地分发reduce处理的数据。区间文件需要考虑的主要问题是数据分发的均衡性,这有赖于对数据深入的理解。

怎样做笛卡尔积?

当Hive设定为严格模式(hive.mapred.mode=strict)时,不允许在HQL语句中出现笛卡尔积,这实际说明了Hive对笛卡尔积支持较弱。因为找不到Join key,Hive只能使用1个reducer来完成笛卡尔积。

当然也可以用上面说的limit的办法来减少某个表参与join的数据量,但对于需要笛卡尔积语义的需求来说,经常是一个大表和一个小表的Join操作,结果仍然很大(以至于无法用单机处理),这时MapJoin才是最好的解决办法。

MapJoin,顾名思义,会在Map端完成Join操作。这需要将Join操作的一个或多个表完全读入内存。

MapJoin的用法是在查询/子查询的SELECT关键字后面添加/*+ MAPJOIN(tablelist) */提示优化器转化为MapJoin(目前Hive的优化器不能自动优化MapJoin)。其中tablelist可以是一个表,或以逗号连接的表的列表。tablelist中的表将会读入内存,应该将小表写在这里。

PS:有用户说MapJoin在子查询中可能出现未知BUG。在大表和小表做笛卡尔积时,规避笛卡尔积的方法是,给Join添加一个Join key,原理很简单:将小表扩充一列join key,并将小表的条目复制数倍,join key各不相同;将大表扩充一列join key为随机数。

怎样写exist in子句?

Hive不支持where子句中的子查询,SQL常用的exist in子句需要改写。这一改写相对简单。考虑以下SQL查询语句:

SELECT a.key, a.value

FROM a

WHERE a.key in

(SELECT b.key

FROM B);

可以改写为

SELECT a.key, a.value

FROM a LEFT OUTER JOIN b ON (a.key = b.key)

WHERE b.key <> NULL;

一个更高效的实现是利用left semi join改写为:

SELECT a.key, a.val

FROM a LEFT SEMI JOIN b on (a.key = b.key);

left semi join是0.5.0以上版本的特性。

Hive怎样决定reducer个数?

Hadoop MapReduce程序中,reducer个数的设定极大影响执行效率,这使得Hive怎样决定reducer个数成为一个关键问题。遗憾的是Hive的估计机制很弱,不指定reducer个数的情况下,Hive会猜测确定一个reducer个数,基于以下两个设定:

1. hive.exec.reducers.bytes.per.reducer(默认为1000^3)

2. hive.exec.reducers.max(默认为999)

计算reducer数的公式很简单:

N=min(参数2,总输入数据量/参数1)

通常情况下,有必要手动指定reducer个数。考虑到map阶段的输出数据量通常会比输入有大幅减少,因此即使不设定reducer个数,重设参数2还是必要的。依据Hadoop的经验,可以将参数2设定为0.95*(集群中TaskTracker个数)。

合并MapReduce操作

Multi-group by

Multi-group by是Hive的一个非常好的特性,它使得Hive中利用中间结果变得非常方便。例如,

FROM (SELECT a.status, b.school, b.gender

FROM status_updates a JOIN profiles b

ON (a.userid = b.userid and

a.ds='2009-03-20' )

) subq1

INSERT OVERWRITE TABLE gender_summary

PARTITION(ds='2009-03-20')

SELECT subq1.gender, COUNT(1) GROUP BY subq1.gender

INSERT OVERWRITE TABLE school_summary

PARTITION(ds='2009-03-20')

SELECT subq1.school, COUNT(1) GROUP BY subq1.school

上述查询语句使用了Multi-group by特性连续group by了2次数据,使用不同的group by key。这一特性可以减少一次MapReduce操作。

Multi-distinct

Multi-distinct是淘宝开发的另一个multi-xxx特性,使用Multi-distinct可以在同一查询/子查询中使用多个distinct,这同样减少了多次MapReduce操作。

摘自:http://www.alidata.org/archives/622

HIVE中join、semi join、outer join的更多相关文章

  1. hive中left join、left outer join和left semi join的区别

    先说结论,再举例子.   hive中,left join与left outer join等价.   left semi join与left outer join的区别:left semi join相当 ...

  2. SQL的inner join、left join、right join、full outer join、union、union all

    主题: SQL的inner join.left join.right join.full outer join.union.union all的学习. Table A和Table B表如下所示: 表A ...

  3. Linq表连接大全(INNER JOIN、LEFT OUTER JOIN、RIGHT OUTER JOIN、FULL OUTER JOIN、CROSS JOIN)

    我们知道在SQL中一共有五种JOIN操作:INNER JOIN.LEFT OUTER JOIN.RIGHT OUTER JOIN.FULL OUTER JOIN.CROSS JOIN 1>先创建 ...

  4. left join 和 left outer join 有什么区别?

    left join 是left outer join的简写,left join默认是outer属性的.outer join则会返回每个满足第一个(顶端)输入与第二个(底端)输入的联接的行.它还返回任何 ...

  5. left join 和 left outer join 的区别

    left join 和 left outer join 的区别 通俗的讲:    A   left   join   B   的连接的记录数与A表的记录数同    A   right   join   ...

  6. [sql]join的5种方式:inner join、left(outer) join、right (outer) Join、full(outer) join、cross join

    现在有两张表  如下图所示:             一 .inner join   返回的结果:两个表的交集行 二. left join   是left outer join的简写 返回结果:左表的 ...

  7. left join 与left outer join的区别

    joinn 语句有三种:inner join, left outer join 和 right outer join都可以简写,分别为join,left join,right join.

  8. hive中的子查询改join操作(转)

    这些子查询在oracle和mysql等数据库中都能执行,但是在hive中却不支持,但是我们可以把这些查询语句改为join操作: -- 1.子查询 select * from A a where a.u ...

  9. hive中与hbase外部表join时内存溢出(hive处理mapjoin的优化器机制)

    与hbase外部表(wizad_mdm_main)进行join出现问题: CREATE TABLE wizad_mdm_dev_lmj_edition_result as select *  from ...

  10. 图解SQL的inner join、left join、right join、full outer join、union、union all的区别

    转自:http://blog.csdn.net/jz20110918/article/details/41806611 假设我们有两张表.Table A 是左边的表.Table B 是右边的表.其各有 ...

随机推荐

  1. Problem C: #104. 普通平衡树

    #include<iostream> #include<cstdio> #include<cstring> #include<cstdlib> #inc ...

  2. Hystrix熔断器(六)

    一.分布式面临的问题 复杂的分布式体系结构中的应用程序有数十个依赖关系,每个依赖关系在某些时候将不可避免地失败雪崩效应多个微服务之间调用的时候,假设服务A调用微服务B和微服务C, 微服务B和微服务C又 ...

  3. springboot Hello World探究

    Hello World探究1.POM文件1.父项目 <parent>     <groupId>org.springframework.boot</groupId> ...

  4. 【点分治】bzoj1316 树上的询问

    #include<cstdio> #include<algorithm> #include<cstring> using namespace std; #defin ...

  5. TZOJ 数据结构实验:单链表元素插入

    描述 实现函数CreateHeader用于创建空链表,实现Insert函数并调用它完成带头节点链表的创建. 部分代码已经给出,请补充完整,提交时请勿包含已经给出的代码. void PrintLinkL ...

  6. 将Java程序打jar包并运行

    1)接着上篇博客继续说手动编译之后,将代码打成jar包,然后直接“java -jar lz.jar"运行不成功的问题.还是先上代码: 这个是Demo类: package org.lz.dem ...

  7. 输入参数之POJO包装类

    1,包装类:需要实现序列化 package com.songyan.pojo; import java.io.Serializable; public class QueryVo implements ...

  8. FSLib.Extension库

    FSLib.Extension库是一个用于.NET的扩展函数库,所提供的函数和方法均使用扩展方法引入,包含数以百计的用于日常编写程序时使用的扩展方法. http://www.fishlee.net/s ...

  9. winform TreeView树节点上下移动

    /// <summary> /// 上移 /// </summary> /// <param name="sender"></param& ...

  10. 初识JdbcTemplate

    1.spring配置文件里注冊:參照使用 Spring jdbcTemplate 进一步简化 JDBC 操作 2.写javabean 3.写rowmapper(依据javabean来封装结果集) 4. ...