题目链接

问题:有n个人,最多选k个,如果选了某个人就必须选他指定的另一个人,问最多能选多少个人。

将每个人所指定的人向他连一条单向边,则每一个点都有唯一的前驱,形成的图是个基环树森林,在同一个强连通分量里的点要么全选,要么全不选。

首先用Tarjan算法将每个强连通分量(基环树上的环)缩成一个点,这样每棵基环树就变成了普通的树了。

定义每颗树上没有入度的点为树根,建立一个虚根与每棵树的根连一条边,将森林转化成树,对根节点求一遍树形背包即可。

树形依赖背包是树形背包的一个特例,即树形背包在根节点上的dp值。

可用siz数组或者bitset优化。

 #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=+;
int hd[N],op[N],ne,n,k,dp[N][N],dg[N],siz[N],mx[N],dfn[N],low[N],scc[N],sta[N],tot,nscc,tp;
struct E {int v,nxt;} e[N<<];
void addedge(int u,int v) {e[ne]= {v,hd[u]},hd[u]=ne++,dg[v]++;}
void Tarjan(int u) {
low[u]=dfn[u]=++tot;
sta[++tp]=u;
int v=op[u];
if(!dfn[v])Tarjan(v),low[u]=min(low[u],low[v]);
else if(!scc[v])low[u]=min(low[u],dfn[v]);
if(low[u]==dfn[u])for(nscc++; !scc[u]; scc[sta[tp--]]=nscc);
}
void getscc() {
memset(scc,,sizeof scc);
memset(dfn,,sizeof dfn);
nscc=tot=,tp=-;
for(int i=; i<=n; ++i)if(!dfn[i])Tarjan(i);
memset(siz,,sizeof siz);
memset(dg,,sizeof dg);
for(int i=; i<=n; ++i)siz[scc[i]]++;
for(int u=; u<=n; ++u) {
int v=op[u];
if(scc[v]!=scc[u])addedge(scc[v],scc[u]);
}
for(int i=; i<=nscc; ++i)if(!dg[i])addedge(,i);
}
void dfs(int u) {
memset(dp[u],,sizeof dp[u]);
dp[u][siz[u]]=;
for(int i=hd[u]; ~i; i=e[i].nxt) {
int v=e[i].v;
dfs(v);
for(int j=siz[u]; j>=; --j)if(dp[u][j])
for(int k=; k<=siz[v]; ++k)if(dp[v][k])
dp[u][j+k]=;
siz[u]+=siz[v];
}
} int main() {
memset(hd,-,sizeof hd),ne=;
scanf("%d%d",&n,&k);
for(int i=; i<=n; ++i)scanf("%d",&op[i]);
getscc();
dfs();
for(int i=k; i>=; --i)if(dp[][i]) {printf("%d\n",i); break;}
return ;
}

bitset优化版:

 #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=+;
int hd[N],op[N],ne,n,k,dg[N],siz[N],dfn[N],low[N],scc[N],sta[N],tot,nscc,tp;
bitset<N> dp[N];
struct E {int v,nxt;} e[N];
void addedge(int u,int v) {e[ne]= {v,hd[u]},hd[u]=ne++,dg[v]++;}
void Tarjan(int u) {
low[u]=dfn[u]=++tot;
sta[++tp]=u;
int v=op[u];
if(!dfn[v])Tarjan(v),low[u]=min(low[u],low[v]);
else if(!scc[v])low[u]=min(low[u],dfn[v]);
if(low[u]==dfn[u])for(nscc++; !scc[u]; scc[sta[tp--]]=nscc);
}
void getscc() {
memset(scc,,sizeof scc);
memset(dfn,,sizeof dfn);
nscc=tot=,tp=-;
for(int i=; i<=n; ++i)if(!dfn[i])Tarjan(i);
memset(siz,,sizeof siz);
memset(dg,,sizeof dg);
for(int i=; i<=n; ++i)siz[scc[i]]++;
for(int u=; u<=n; ++u) {
int v=op[u];
if(scc[v]!=scc[u])addedge(scc[v],scc[u]);
}
for(int i=; i<=nscc; ++i)if(!dg[i])addedge(,i);
}
void dfs(int u) {
dp[u].reset();
dp[u].set(siz[u]);
for(int i=hd[u]; ~i; i=e[i].nxt) {
int v=e[i].v;
dfs(v);
bitset<N> t=dp[u];
for(int j=; j<N; ++j)if(dp[v].test(j))dp[u]|=t<<j;
}
} int main() {
memset(hd,-,sizeof hd),ne=;
scanf("%d%d",&n,&k);
for(int i=; i<=n; ++i)scanf("%d",&op[i]);
getscc();
dfs();
for(int i=k; i>=; --i)if(dp[].test(i)) {printf("%d\n",i); break;}
return ;
}

Gym - 100502G Outing (强连通缩点+树形依赖背包)的更多相关文章

  1. 【bzoj2427】【软件安装】tarjan缩点+树形依赖背包

    (上不了p站我要死了,侵权度娘背锅) Description 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上, ...

  2. BZOJ.4182.Shopping(点分治/dsu on tree 树形依赖背包 多重背包 单调队列)

    BZOJ 题目的限制即:给定一棵树,只能任选一个连通块然后做背包,且每个点上的物品至少取一个.求花费为\(m\)时最大价值. 令\(f[i][j]\)表示在点\(i\),已用体积为\(j\)的最大价值 ...

  3. BZOJ.4910.[SDOI2017]苹果树(树形依赖背包 DP 单调队列)

    BZOJ 洛谷 \(shadowice\)已经把他的思路说的很清楚了,可以先看一下会更好理解? 这篇主要是对\(Claris\)题解的简单说明.与\(shadowice\)的做法还是有差异的(比如并没 ...

  4. bzoj4753: [Jsoi2016]最佳团体(分数规划+树形依赖背包)

    菜菜推荐的“水题”虐了我一天T T...(菜菜好强强qwq~ 显然是个分数规划题,二分答案算出p[i]-mid*s[i]之后在树上跑依赖背包,选k个最大值如果>0说明还有更优解. 第一次接触树形 ...

  5. RNQOJ [stupid]愚蠢的矿工(树形依赖背包)

    题意 题目链接 Sol 树形依赖背包板子题 树形依赖背包大概就是说:对于一个点,只有选了它的父亲才能选自身 把dfs序建出来,倒过来考虑 设\(f[i][j]\)表示从第\(i\)个节点往后背包体积为 ...

  6. 【LuoguP1273有线电视网】树形依赖背包

    参考论文http://wenku.baidu.com/view/8ab3daef5ef7ba0d4a733b25.html 参考一篇写的很好的博文http://www.cnblogs.com/GXZC ...

  7. Codeforces Gym100502G:Outing(缩点+有依赖的树形背包)

    http://codeforces.com/gym/100502/attachments 题意:有n个点,容量为tol,接下来n个关系,表示选了第i个点,那么第xi个点就必须被选.问最多可以选多少个点 ...

  8. AcWing 286. 选课 (树形依赖分组背包)打卡

    有依赖的背包 首先依赖的概念,就是一个东西依附与一个东西之上,我们想买附品的话必须要把主品先买下来,这个可以先做下这道题 https://www.cnblogs.com/Lis-/p/11047466 ...

  9. CodeForcesGym 100502G Outing

    Outing Time Limit: 1000ms Memory Limit: 524288KB This problem will be judged on CodeForcesGym. Origi ...

随机推荐

  1. Boostrap常用组件英文名

    dropdownlisttabsearchVertical TabSidebar with tabssidebarExpandable Panel ListFiltered Attendees Lis ...

  2. UI组件之UIImage

    UIImageView:图像视图,用于在应用程序中显示图片 UIImage:是将图片文件转换为程序中的图片对象 UIImageView是UIImage的载体 方法一:用此方法创建图片对象,会将图片ca ...

  3. requestAnimationFrame 的实验性实践

    记得当 requestAnimationFrame 出现时我立马就石更了,就跟初次玩耍 transition 时一样,欣喜若狂... 然后,然后特么的就懵逼了,这明明就是口挖不通的深井呀(如果是我傻, ...

  4. 常用display属性

    table 1. 宽高由内容撑开 2.独占一行 3.可设置宽高 4.可设置margin.padding inline-table 与display: table大体一致,区别在于不独占一行,为行内元素 ...

  5. Vue.js学习笔记 第五篇 事件处理

    监听事件 <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <titl ...

  6. POJ 1459 网络流 EK算法

    题意: 2 1 1 2 (0,1)20 (1,0)10 (0)15 (1)20 2 1 1 2 表示 共有2个节点,生产能量的点1个,消耗能量的点1个, 传递能量的通道2条:(0,1)20 (1,0) ...

  7. jenkins tomcat

    tomcat增加用户配置: <role rolename="tomcat"/> <role rolename="role1"/> < ...

  8. CentOS 7(64位) 下Docker的安装

    系统要求是64位,内核版本至少3.10. 首先添加yum软件源: 之后更新yum软件源缓存,并安装docker-engine 查看docker 版本: Cannot connect to the Do ...

  9. 关于es集群转换为单点后,主分片丢失的问题(健康检测状态为red)

    正在找解决方案 前后情况是, 之前是es双节点,之后更改为单节点,data中的数据都是双节点的,也许导致了单节点的状态不正常,删除了data目录下内容后,重启es,好了,这是测试环境,所以这么干的

  10. Python词云的中文问题

    image= Image.open('F:/__identity/course/建模/九寨沟地震/四川地图.jpg') fig = plt.figure(figsize=(20, 16)) graph ...