Balanced Lineup(线段树的简单了解)
个人心得:线段树就是将一段序列拆分为一个个单独的节点,不过每俩个节点又可以联系在一起,所以就能很好的结合,比如这一题,
每次插入的时候都将这一段区间的最大最小值更新,就能大大减少时间。
这个线段树建立是以数组的,根节点为0,后面每次都是父节点*2+1/2。
这题简单的教会了我如何创建线段树,以及一些简单的线段树操作,还要继续加深。
For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.
Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.
Input
Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i
Lines N+2..N+Q+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.
Output
Sample Input
6 3
1
7
3
4
2
5
1 5
4 6
2 2
Sample Output
6
3
0
#include <stdio.h>
#include <string.h>
#include<iostream>
#include <algorithm>
#include <queue>
using namespace std;
const int inf=0xffffff0;
int maxa=-inf;
int mina=inf;
struct tree
{
int l,r;
int maxt,mint;
int mid()
{
return (l+r)/;
} };
tree Tree[];
void builttree(int root,int x,int y){
Tree[root].l=x;
Tree[root].r=y;
Tree[root].maxt=-inf;
Tree[root].mint=inf;
if(x!=y){
builttree(root*+,x,(x+y)/);
builttree(root*+,(x+y)/+,y);
}
}
void inserttree(int root,int i,int v){
if(Tree[root].l==i&Tree[root].r==i)
{
Tree[root].maxt=Tree[root].mint=v;
return;
}
Tree[root].maxt=max(Tree[root].maxt,v);
Tree[root].mint=min(Tree[root].mint,v);
if(i<=Tree[root].mid())
inserttree(root*+,i,v);
else
inserttree(root*+,i,v); }
void checktree(int root,int x,int y){
if(Tree[root].maxt<=maxa&&Tree[root].mint>=mina)
return;
if(Tree[root].l==x&&Tree[root].r==y)
{
maxa=max(maxa,Tree[root].maxt);
mina=min(mina,Tree[root].mint);
return ;
}
if(y<=Tree[root].mid())
checktree(root*+,x,y);
else if(x>Tree[root].mid())
checktree(root*+,x,y);
else {
checktree(root*+,x,Tree[root].mid());
checktree(root*+,Tree[root].mid()+,y);
} }
int main()
{
int n,m;
scanf("%d%d",&n,&m);
builttree(,,n);
for(int i=;i<=n;i++)
{
int x;
scanf("%d",&x);
inserttree(,i,x);
}
for(int i=;i<=m;i++)
{
int x,y;
scanf("%d%d",&x,&y);
mina=inf,maxa=-inf;
checktree(,x,y);
printf("%d\n",maxa-mina);
} return ; }
Balanced Lineup(线段树的简单了解)的更多相关文章
- BZOJ-1699 Balanced Lineup 线段树区间最大差值
Balanced Lineup Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 41548 Accepted: 19514 Cas ...
- [POJ] 3264 Balanced Lineup [线段树]
Balanced Lineup Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 34306 Accepted: 16137 ...
- 【POJ】3264 Balanced Lineup ——线段树 区间最值
Balanced Lineup Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 34140 Accepted: 16044 ...
- bzoj 1636: [Usaco2007 Jan]Balanced Lineup -- 线段树
1636: [Usaco2007 Jan]Balanced Lineup Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 772 Solved: 560线 ...
- POJ 3264 Balanced Lineup 线段树 第三题
Balanced Lineup Description For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line ...
- poj 3264 Balanced Lineup(线段树、RMQ)
题目链接: http://poj.org/problem?id=3264 思路分析: 典型的区间统计问题,要求求出某段区间中的极值,可以使用线段树求解. 在线段树结点中存储区间中的最小值与最大值:查询 ...
- POJ 3264 Balanced Lineup (线段树)
Balanced Lineup For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the s ...
- POJ 3264 Balanced Lineup 线段树RMQ
http://poj.org/problem?id=3264 题目大意: 给定N个数,还有Q个询问,求每个询问中给定的区间[a,b]中最大值和最小值之差. 思路: 依旧是线段树水题~ #include ...
- POJ3264 Balanced Lineup —— 线段树单点更新 区间最大最小值
题目链接:https://vjudge.net/problem/POJ-3264 For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000 ...
- POJ3264 Balanced Lineup 线段树区间最大值 最小值
Q个数 问区间最大值-区间最小值 // #pragma comment(linker, "/STACK:1024000000,1024000000") #include <i ...
随机推荐
- 防止基本的XSS攻击 滤掉HTML标签
/** * 防止基本的XSS攻击 滤掉HTML标签 * 将HTML的特殊字符转换为了HTML实体 htmlentities * 将#和%转换为他们对应的实体符号 * 加上了$length参数来限制提交 ...
- ETL应用:使用Pro*C实现文件抽取的方法
/******************************************* ***** 函数功能 : ***** 抽取数据库记录 ***** ********************** ...
- 【leetcode刷题笔记】Minimum Window Substring
Given a string S and a string T, find the minimum window in S which will contain all the characters ...
- Hadoop单机搭建
单机Hadoop搭建 1.下载hadoop-2.7.3.tar.gz http://www.apache.org/dyn/closer.cgi/hadoop/common/hadoop-2.7.3/h ...
- UVA11297 Census
题目 UVA11297 Census 做法 二维线段树,单点修改,矩阵查询,树套树(\(x,y\)),维护最大值最小值废话 有一点要注意的是:\(x\)树传到\(y\)树里面修改的时候,如果\(x\) ...
- perl FAQ(zz)
1. Why do you write a program in Perl? Ans : Easy to use and fast execution since perl script underg ...
- .NET应用程序默认使用管理员身份打开
1.在源码的Properties目录中找到 app.manifest(如果没有进入第二步,有跳过第二步) 2.如果没有app.manifest文件可以打开项目属性,找到安全性项,勾上启用 ClickO ...
- 时间插件之My97DatePickerBeta
My97DatePickerBeta使用很简单 1.在jsp页面中 引入JS 下载地址:链接: https://pan.baidu.com/s/1bp5uzuv 密码: ya9a <script ...
- 剑指Offer——链表中倒数第k个节点
Question 输入一个链表,输出该链表中倒数第k个结点. Solution 一种想法就是扫描两边,第一遍求出总的节点个数,第二遍从头开始走n-k个 第二种思想类似于fast-slow指针的方法,f ...
- composer启用国内镜像网站的配置更改办法
用法: 有两种方式启用本镜像服务: 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置).见“例1” 将以下配置信息添加到你的项目的 composer.jso ...