题目描述

某中学有 n 名男同学,m 名女同学和两名老师要排队参加体检。他们排成一条直线,并且任意两名女同学不能相邻,两名老师也不能相邻,那么一共有多少种排法呢?(注意:任意两个人都是不同的)

输入输出格式

输入格式:

只有一行且为用空格隔开的两个非负整数 n 和 m,其含义如上所述。 对于 30%的数据 n<=100,m<=100 对于 100%的数据 n<=2000,m<=2000

输出格式:

输出文件 output.txt 仅包含一个非负整数,表示不同的排法个数。注意答案可能很大。

输入输出样例

输入样例#1:

1  1
输出样例#1:

12

题解:高精+排列组合
n个男生排列A(n,n),然后插上两个老师A(n+1,2),然后插上m个女生
A(n+2,m-1),结果就是A(n,n)*A(n+1,2)*A(n+2,m-1)。
但是发现,两个老师插入时是可以挨在一起的,只要一个女生去他们中间就好了。
把两个老师看成一个男生,是A(n+1,n+1)*A(2,2),中间再插入一个女生
A(n+1,n+1)*A(2,2)*m,然后剩下的m-1个女生再插入,结果是
A(n+1,n+1)*A(2,2)*m*A(n+2,m-1)。
那么总的答案就是
A(n,n)*A(n+1,2)*A(n+3,m)+A(n+1,n+1)*A(2,2)*m+A(n+2,m-1)
化简一下式子最后只要高精乘就可以了。
这是个压位高精吧...背的Candy?模板我也不知道啊...(逃...
一直WA原来是数组开小了...
代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#define LL long long
#define B 10000
using namespace std;
LL m,n;
struct Big{
int a[], n;
int& operator [](int x) {return a[x];}
Big():n() {memset(a, , sizeof(a));}
void ini(int x) {a[]=x; n=;}
}ans,p; Big operator *(Big a, int b) {
int g=;
for(int i=; i<=a.n; i++)
g += a[i]*b, a[i] = g%B, g/=B;
if(g) a[++a.n] = g;
return a;
} Big operator *(Big a, Big b) {
Big c;
for(int i=; i<=a.n; i++) {
int g=;
for(int j=; j<=b.n; j++)
g += c[i+j-]+a[i]*b[j], c[i+j-] = g%B, g/=B;
c[i+b.n] = g;
}
c.n = a.n + b.n;
while(c.n> && c[c.n]==) c.n--;
return c;
} Big operator +(Big a, Big b) {
int g=, n=max(a.n, b.n);
for(int i=; i<=n; i++) {
g += i<=a.n ? a[i] : ;
g += i<=b.n ? b[i] : ;
a[i] = g%B, g/=B;
}
a.n = n;
if(g) a[++a.n] = g;
return a;
} Big operator -(Big a, Big b) {
for(int i=; i<=b.n; i++) {
if(a[i]<b[i]) a[i]+=B, a[i+]--;
a[i] -= b[i];
}
int p=b.n+;
while(a[p]<) a[p]+=B, a[++p]--;
while(a.n> && a[a.n]==) a.n--;
return a;
} void Print(Big &a) {
printf("%d", a[a.n]);
for(int i=a.n-; i>=; i--) printf("%04d", a[i]);
} int main(){
scanf("%d%d",&n,&m);ans.a[]=;p.a[]=;
for(int i=;i<=n;i++)ans=ans*i;
ans=ans*n*(n+);
for(int i=n+-m+;i<=n+;i++)ans=ans*i;
for(int i=;i<=n+;i++)p=p*i;
p=p**m;
for(int i=n+-m+;i<=n+;i++)p=p*i;
ans=ans+p;
Print(ans);
return ;
}
 

洛谷 P3223 [HNOI2012]排队的更多相关文章

  1. [NOIP2013提高&洛谷P1966]火柴排队 题解(树状数组求逆序对)

    [NOIP2013提高&洛谷P1966]火柴排队 Description 涵涵有两盒火柴,每盒装有 n 根火柴,每根火柴都有一个高度. 现在将每盒中的火柴各自排成一列, 同一列火柴的高度互不相 ...

  2. 洛谷P3222 [HNOI2012]射箭(计算几何,半平面交,双端队列)

    洛谷题目传送门 设抛物线方程为\(y=ax^2+bx(a<0,b>0)\),我们想要求出一组\(a,b\)使得它尽可能满足更多的要求.这个显然可以二分答案. 如何check当前的\(mid ...

  3. BZOJ2730或洛谷3225 [HNOI2012]矿场搭建

    BZOJ原题链接 洛谷原题链接 显然在一个点双连通分量里,无论是哪一个挖煤点倒塌,其余挖煤点就可以互相到达,而对于一个点双连通分量来说,与外界的联系全看割点,所以我们先用\(tarjan\)求出点双连 ...

  4. 洛谷 P3225 [HNOI2012]矿场搭建 解题报告

    P3225 [HNOI2012]矿场搭建 题目描述 煤矿工地可以看成是由隧道连接挖煤点组成的无向图.为安全起见,希望在工地发生事故时所有挖煤点的工人都能有一条出路逃到救援出口处.于是矿主决定在某些挖煤 ...

  5. 【刷题】洛谷 P1966 火柴排队

    题目描述 涵涵有两盒火柴,每盒装有 n 根火柴,每根火柴都有一个高度. 现在将每盒中的火柴各自排成一列, 同一列火柴的高度互不相同, 两列火柴之间的距离定义为: ∑(ai-bi)^2 其中 ai 表示 ...

  6. P3223 [HNOI2012]排队

    题目描述 某中学有 n 名男同学,m 名女同学和两名老师要排队参加体检.他们排成一条直线,并且任意两名女同学不能相邻,两名老师也不能相邻,那么一共有多少种排法呢?(注意:任意两个人都是不同的) 输入输 ...

  7. 洛谷 P1966 火柴排队 解题报告

    P1966 火柴排队 题目描述 涵涵有两盒火柴,每盒装有 \(n\) 根火柴,每根火柴都有一个高度. 现在将每盒中的火柴各自排成一列, 同一列火柴的高度互不相同, 两列火柴之间的距离定义为: \(\s ...

  8. 洛谷 P3224 [HNOI2012]永无乡 解题报告

    P3224 [HNOI2012]永无乡 题目描述 永无乡包含 \(n\) 座岛,编号从 \(1\) 到 \(n\) ,每座岛都有自己的独一无二的重要度,按照重要度可以将这 \(n\) 座岛排名,名次用 ...

  9. Luogu P3223 [HNOI2012]排队 组合

    本来做了一道  P4901 排队 后来发现自己做错题了...到也都是数学qwq 这题最恶心的就是两只(雾)老师. 那我们分类讨论: 1.两个老师之间是男生: $ A(n,n)*A(n+1,2)*A(n ...

随机推荐

  1. iOS 学习如何声明私有变量和私有方法

    私有变量 首先来说 OC 中没有绝对的私有变量,这么说基于两点原因: 1可修改:   通过KVC  键值编码 来修改私有成员变量的值 2可读取 :  通过底层runtime 获取实例变量Ivar 对应 ...

  2. ORACLE对象模式

    在oracle数据库中,数据对象是以模式(Schema)为单位进行组织和管理的.所谓模式是指一系列逻辑数据结构或对象的集合. 模式与用户相对应,一个模式只能被一个数据库用户所拥有,并且模式名称与这个用 ...

  3. ETL应用:一种一次获取一个平台接口文件的方法

    ETL应用场景中,若对端接口文件未能提供,任务会处于循环等待,直到对端提供为止,该方法极大的消耗了系统资源.为此想到了一种方法,一次获取一个平台的文件,实现思路如下: 1.第一次获取对端平台提供目录下 ...

  4. 【HackerRank】The Love-Letter Mystery

    James找到了他的朋友Harry要给女朋友的情书.James很爱恶作剧,所以他决定要胡搞一下.他把信中的每个单字都变成了回文.对任何给定的字符串,他可以减少其中任何一个字符的值,例如'd'可以变成' ...

  5. Android 电容屏驱动

    Android 电容屏(一):电容屏基本原理篇 Android 电容屏(二):驱动调试之基本概念篇 Android 电容屏(三):驱动调试之驱动程序分析篇

  6. c++ 关键字extern(声明)和定义的区别

    extern  : extern  int  i; // declares but does not define i int i;         //declares and defines i ...

  7. 为WebBrowser指定IE内核版本(MSIE 7.0)

    .Web Browser Control – Specifying the IE Version http://www.west-wind.com/weblog/posts/2011/May/21/W ...

  8. js获取css样式方法

    一.CSS样式共有三种:内联样式(行间样式).内部样式.外部样式(链接式和导入式) <div id="a" style="width: 100px;height: ...

  9. 如何用wamp配置多域名虚拟目录

    一.前言 自从重装了最新版wamp64后就不可用了,下面来介绍我的解决方法,两者均可尝试,差别并不大! 二.配置虚拟主机 1.首先打开apache的配置文件httpd.conf (路径\wamp64\ ...

  10. 一个专为电商定制的域名.shop

    2.73亿元人民币获得.shop域名的经营权,使shop域名成为最高节拍价的顶级域名.虽然最终“最高节拍价”被web域名打破,但在电商届域名里shop还是王者.shop作为一个主要面向线上.线下销售实 ...