Nowadays, a kind of chess game called “Super Jumping! Jumping! Jumping!” is very popular in HDU. Maybe you are a good boy, and know little about this game, so I introduce it to you now.

The game can be played by two or more than two players. It consists of a chessboard(棋盘)and some chessmen(棋子), and all chessmen are marked by a positive integer or “start” or “end”. The player starts from start-point and must jumps into end-point finally. In the course of jumping, the player will visit the chessmen in the path, but everyone must jumps from one chessman to another absolutely bigger (you can assume start-point is a minimum and end-point is a maximum.). And all players cannot go backwards. One jumping can go from a chessman to next, also can go across many chessmen, and even you can straightly get to end-point from start-point. Of course you get zero point in this situation. A player is a winner if and only if he can get a bigger score according to his jumping solution. Note that your score comes from the sum of value on the chessmen in you jumping path.

Your task is to output the maximum value according to the given chessmen list.

InputInput contains multiple test cases. Each test case is described in a line as follow:

N value_1 value_2 …value_N

It is guarantied that N is not more than 1000 and all value_i are in the range of 32-int.

A test case starting with 0 terminates the input and this test case is not to be processed.

OutputFor each case, print the maximum according to rules, and one line one case.

Sample Input

3 1 3 2
4 1 2 3 4
4 3 3 2 1
0

Sample Output

4
10
3
题意:在start->end这条路上有多个棋手,每个棋手都有一个价值,如果你想获得某个棋手的价值则该棋手的价值必须比上一个获得的棋手的价值大,求在这条路线上你能获得的最大价值
分析:从题面上来看,是让我们求最大递增子序列的和。如果我们要求前k项max(lIs),那我们可以从前k项遍历,如果str[j]<str[k],则dp[k]=max(dp[k],dp[j]+str[k]),反之我们不更新。
dp[i]表示前i项最大递增子序列的和
 #include<stdio.h>
#include<string.h>
#include<algorithm>
#include<stack>
#include<queue>
#include<iostream>
#include<map>
#include<vector>
#define Inf 0x3f3f3f3f
#define PI acos(-1.0)
using namespace std;
int dp[];
int str[];
int main()
{
int m,n,i,j,pos;
while(scanf("%d",&m)!=-&&m)
{
for(i=; i<=m; i++)
{
scanf("%d",&str[i]);
}
memset(dp,,sizeof(dp));
int ans=-Inf;
for(i=;i<=m;i++)
{
dp[i]=str[i];
for(j=;j<=i;j++)
{
if(str[j]<str[i])
{
dp[i]=max(dp[i],dp[j]+str[i]);
}
}
ans=max(ans,dp[i]); }
cout<<ans<<endl;
}
return ;
}
我们会发现对与前n项的max(LIS),都有这个重叠子问题,因此
我们构造状态转移方程dp[k]=max(dp[k],dp[j]+str[k])

Super Jumping! Jumping! Jumping(最大递增子序列的和)的更多相关文章

  1. HDU 1087 Super Jumping! Jumping! Jumping! 最大递增子序列

    Super Jumping! Jumping! Jumping! Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 ...

  2. HDU 1087 简单dp,求递增子序列使和最大

    Super Jumping! Jumping! Jumping! Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 ...

  3. (转载)最长递增子序列 O(NlogN)算法

    原博文:传送门 最长递增子序列(Longest Increasing Subsequence) 下面我们简记为 LIS. 定义d[k]:长度为k的上升子序列的最末元素,若有多个长度为k的上升子序列,则 ...

  4. nyoj17_又做最大递增子序列

    单调递增最长子序列 时间限制:3000 ms  |  内存限制:65535 KB 难度:4   描述 求一个字符串的最长递增子序列的长度 如:dabdbf最长递增子序列就是abdf,长度为4   输入 ...

  5. 最长公共子序列(LCS)和最长递增子序列(LIS)的求解

    一.最长公共子序列 经典的动态规划问题,大概的陈述如下: 给定两个序列a1,a2,a3,a4,a5,a6......和b1,b2,b3,b4,b5,b6.......,要求这样的序列使得c同时是这两个 ...

  6. 最长递增子序列 O(NlogN)算法

    转自:点击打开链接 最长递增子序列,Longest Increasing Subsequence 下面我们简记为 LIS. 排序+LCS算法 以及 DP算法就忽略了,这两个太容易理解了. 假设存在一个 ...

  7. [LintCode] Longest Increasing Continuous Subsequence 最长连续递增子序列

    Give an integer array,find the longest increasing continuous subsequence in this array. An increasin ...

  8. 51nod 1134 最长递增子序列

    题目链接:51nod 1134 最长递增子序列 #include<cstdio> #include<cstring> #include<algorithm> usi ...

  9. 动态规划 - 最长递增子序列(LIS)

    最长递增子序列是动态规划中经典的问题,详细如下: 在一个已知的序列{a1,a2,...,an}中,取出若干数组组成新的序列{ai1,ai2,...,aim},其中下标i1,i2,...,im保持递增, ...

随机推荐

  1. css 中 overflow: hidden清楚浮动的真正原因

    1. 先上一段代码清楚浮动的代码, 外层ul设置overflow为hidden, 内层li设置float为left左浮动 <!DOCTYPE html> <html> < ...

  2. Ubuntu下搭建WordPress环境

    WordPress是一种使用PHP语言开发的博客平台,用户可以在支持PHP和MySQL数据库的服务器上架设属于自己的网站.也可以把 WordPress当作一个内容管理系统(CMS)来使用.WordPr ...

  3. auto_ptr, unique_ptr, shared_ptr and weak_ptr智能指针讲解

    笔者介绍:姜雪伟,IT公司技术合伙人,IT高级讲师,CSDN社区专家,特邀编辑,畅销书作者,已出版书籍:<手把手教你架构3D游戏引擎>电子工业出版社和<Unity3D实战核心技术详解 ...

  4. 4.CRT远程连接的使用

    目录: 1.为什么需要远程连接? 2.一般的远程连接工具有哪些? 3.远程连接的原理? 4.远程连接的软件的功能和使用相关技巧? 1.为什么选择远程连接? 因为在实际工作中,机房一般都不可能在办公室, ...

  5. LINUX命令—让人喜爱的find

    FIND命令的让人喜爱的地方在于其后面跟着的 –exec  可以执行其他linux命令 这点太让人高兴了,不过他的结尾要带一个特殊的结构 {} \: 说说实例:

  6. bzoj 5369 最大前缀和

    Written with StackEdit. Description 小\(C\)是一个算法竞赛爱好者,有一天小\(C\)遇到了一个非常难的问题:求一个序列的最大子段和. 但是小\(C\)并不会做这 ...

  7. WPF XMAL获取元素的父元素,子元素

    /// 获得指定元素的父元素 /// </summary> /// <typeparam name="T">指定页面元素</typeparam> ...

  8. 前阿里DT总监欧吉良猝死:一代大神勾践陨落滴滴

    欧吉良 阿里巴巴集团数据技术及产品部(DT)总监,淘宝网&天猫BI团队负责人,集团数据委员会数据运营组组长,阿里数据大学校长:2007年7月正式加入阿里,先后在支付宝.天猫.淘宝.数据技术及产 ...

  9. shell中把大写字母转换成小写字母

    shell中把大写字母转换成小写字母 参考:http://www.jb51.net/article/40257.htm echo "AABBCC" | tr "[:upp ...

  10. Go基本语句

    递增递减语句 在GO中,++与--是作为语句而并不是作为表达式 package main import "fmt" func main() { a:= //a=a++ //语句而非 ...