最短路径算法 SP
#include<stdio.h>
#include<string.h>
#include<stack>
using namespace std;
const int N=;
const int INF=0x3f3f3f3f;
int p[N][N],d[N],path[N]; ///path数组用于记录路径 void dijkstra(int sec,int n) ///sec为出发节点,n表示图中节点总数
{
int i,j,min,min_num;
int vis[N]={,};
for(i=;i<n;i++)
{
d[i]=p[sec][i];
}
vis[sec]=;d[sec]=;
for(i=;i<n;i++)
{
min=INF;
for(j=;j<n;j++)
{
if(!vis[j]&&d[j]<min)
{
min=d[j];
min_num=j;
}
}
vis[min_num]=;
for(j=;j<n;j++)
{
if(!vis[j]&&d[j]>min+p[min_num][j])
{
path[j]=min_num;
///path[j]记录d[j]暂时最短路径的最后一个中途节点min_num,
///表明d[j]最后一段从节点min_num到节点j
d[j]=min+p[min_num][j];
}
}
}
}
void print(int sec,int n) ///sec为出发节点,n表示图中节点总数
{
int i,j;
stack<int> q; ///由于记录的中途节点是倒序的,所以使用栈(先进后出),获得正序
for(i=;i<n;i++) ///打印从出发节点到各节点的最短距离和经过的路径
{
j=i;
while(path[j]!=-) ///如果j有中途节点
{
q.push(j); ///将j压入堆
j=path[j]; ///将j的前个中途节点赋给j
}
q.push(j);
printf("%d=>%d, length:%d, path: %d ",sec,i,d[i],sec);
while(!q.empty()) ///先进后出,获得正序
{
printf("%d ",q.top());///打印堆的头节点
q.pop(); ///将堆的头节点弹出
}
printf("\n");
}
}
int main()
{
memset(path,-,sizeof(path));///将path数组初始化为-1
int i,j,n=;
for(i=;i<n;i++)
{
for(j=;j<n;j++)
{
p[i][j]=(i==j?:INF);
}
}
///p[0][1]=10;p[0][3]=30;p[1][2]=50;p[1][4]=100;p[2][4]=5;p[3][2]=20;p[3][4]=60;p[4][5]=10;//p[i][j]表示节点i到节点j的距离
/*p[0][1]=10;p[1][0]=10;p[1][2]=1;p[2][1]=1;
p[2][4]=4;p[4][2]=4;p[0][3]=2;p[3][0]=2;p[3][2]=1;p[2][3]=1;
p[3][4]=7;p[4][3]=7;*/
p[][]=;p[][]=;
p[][]=;p[][]=;
p[][]=;p[][]=;
p[][]=;p[][]=;p[][]=;p[][]=;
dijkstra(,n); ///求从节点0出发到各节点的最短距离
print(,n); ///打印从节点0出发到各节点的最短距离和路径
return ;
}
最短路径算法 SP的更多相关文章
- 加权图的最小生成树、最短路径算法 - java实现
加权图相关算法 前言 本文主要介绍加权图算法中两个重要应用:最小生成树和最短路径. 求最小生成树时针对的是加权无向图,加权有向图的最小生成树算法成为"最小属树形图"问题,较为复杂, ...
- Johnson 全源最短路径算法
解决单源最短路径问题(Single Source Shortest Paths Problem)的算法包括: Dijkstra 单源最短路径算法:时间复杂度为 O(E + VlogV),要求权值非负: ...
- Floyd-Warshall 全源最短路径算法
Floyd-Warshall 算法采用动态规划方案来解决在一个有向图 G = (V, E) 上每对顶点间的最短路径问题,即全源最短路径问题(All-Pairs Shortest Paths Probl ...
- Dijkstra 单源最短路径算法
Dijkstra 算法是一种用于计算带权有向图中单源最短路径(SSSP:Single-Source Shortest Path)的算法,由计算机科学家 Edsger Dijkstra 于 1956 年 ...
- Bellman-Ford 单源最短路径算法
Bellman-Ford 算法是一种用于计算带权有向图中单源最短路径(SSSP:Single-Source Shortest Path)的算法.该算法由 Richard Bellman 和 Leste ...
- 几大最短路径算法比较(Floyd & Dijkstra & Bellman-Ford & SPFA)
几个最短路径算法的比较:Floyd 求多源.无负权边(此处错误?应该可以有负权边)的最短路.用矩阵记录图.时效性较差,时间复杂度O(V^3). Floyd-Warshall算法(Floyd ...
- 带权图的最短路径算法(Dijkstra)实现
一,介绍 本文实现带权图的最短路径算法.给定图中一个顶点,求解该顶点到图中所有其他顶点的最短路径 以及 最短路径的长度.在决定写这篇文章之前,在网上找了很多关于Dijkstra算法实现,但大部分是不带 ...
- 无向图的最短路径算法JAVA实现
一,问题描述 给出一个无向图,指定无向图中某个顶点作为源点.求出图中所有顶点到源点的最短路径. 无向图的最短路径其实是源点到该顶点的最少边的数目. 本文假设图的信息保存在文件中,通过读取文件来构造图. ...
- 最短路径算法之Dijkstra算法(java实现)
前言 Dijkstra算法是最短路径算法中为人熟知的一种,是单起点全路径算法.该算法被称为是“贪心算法”的成功典范.本文接下来将尝试以最通俗的语言来介绍这个伟大的算法,并赋予java实现代码. 一.知 ...
随机推荐
- C#中利用iTextSharp开发二维码防伪标签(1)
开发的基本说明与尝试 一个亲戚朋友是做防伪码印刷的,之前的电话防伪.短信防伪都用Delphi给他设计,使用也挺不错,后来又加了一个基于asp的网页版防伪查询.由于业务需求,今年年初朋友又提成希望能够完 ...
- 10-mongodb启动错误
1.error信息 python@ubuntu:~$ mongod --22T17:: I CONTROL [initandlisten] MongoDB starting : pid= port= ...
- LeetCode:7. Reverse Integer(Easy)
题目要求:将给出的整数进行逆序输出 注意:整数的最大范围-2147483648-2147483647,当翻转后的数超出范围后返回0 思路:对给出的整数除以10,取余和取整:然后对取整部分继续取余和取整 ...
- web前端/移动端H5博客专家博客大全--值得收藏的前端技术大牛博客地址
web前端/移动端H5博客专家博客大全--值得收藏的前端技术大牛博客地址 Huang Jie Blog .Com-前端开发 http://www.huangjieblog.com/?feed=rs ...
- Unity 3d C#和Javascript脚本互相调用 解决方案(非原创、整理资料,并经过实践得来)
Unity 3d C#和Javascript脚本互相调用 解决方案 1.背景知识 脚本的编译过程分四步: 1. 编译所有 ”Standard Assets”, “Pro Standard Assets ...
- Qt Demo Http 解析网址 Openssl
今天练习了一下Qt 解析http协议,在Demo中使用到了Openssl 一上午的时间都是编译openssl,不过还是没有成功,很遗憾,这里整理了有关这个Demo的本件 网盘连接:见下方评论吧,长传太 ...
- Qt 在控件上面绘图 label,pushbutton。。。。。
最近有点时间,就研究研究Qt ,提升一下自己 我记得我在刚开始学习Qt 的时候,想要在一个控件上面绘制图形,那就要构建一个新类来调用该控件的绘图函数 今天看到了狗哥的学习博客,感觉自己好渺小啊,按照狗 ...
- Ubuntu下使用Git_3
这里是我举得小白阶段比较困难的地方了, 当在我们向远程数据库推送数据之前,有其他用户向远程数据库推送的相同的文件的时候,服务器会拒绝我们的推送,这个时候就需要我们来整合这两个文件 如图说是,现在显示的 ...
- 给虚拟机发送键盘按键key
使用举例:virsh send-key 11 KEY_LEFTCTRL KEY_LEFTALT KEY_DELETE作用:发送"ctrl+alt+del"给虚拟机,linux虚拟机 ...
- python基础训练营01
一.基础讲解: 1.1 文件末尾的.py后缀,指出这个文件,是一个python文件,因此,系统将使用python解释器来运行该文件,确定文件中每一个单词的含义. 1.2 python编辑/运行方法: ...