最快的Hash表算法
我们由一个简单的问题逐步入手:有一个庞大的字符串数组,然后给你一个单独的字符串,让你从这个数组中查找是否有这个字符串并找到它,你会怎么做?有一个方法最简单,老老实实从头查到尾,一个一个比较,直到找到为止,我想只要学过程序设计的人都能把这样一个程序作出来,但要是有程序员把这样的程序交给用户,我只能用无语来评价,或许它真的能工作,但...也只能如此了。
最合适的算法自然是使用HashTable(哈希表),先介绍介绍其中的基本知识,所谓Hash,一般是一个整数,通过某种算法,可以把一个字符串"压缩" 成一个整数。当然,无论如何,一个32位整数是无法对应回一个字符串的,但在程序中,两个字符串计算出的Hash值相等的可能非常小,下面看看在MPQ中的Hash算法:
函数一、以下的函数生成一个长度为0x500(合10进制数:1280)的cryptTable[0x500]
void prepareCryptTable()
{
unsigned long seed = 0x00100001, index1 = 0, index2 = 0, i;
for( index1 = 0; index1 < 0x100; index1++ )
{
for( index2 = index1, i = 0; i < 5; i++, index2 += 0x100 )
{
unsigned long temp1, temp2;
seed = (seed * 125 + 3) % 0x2AAAAB;
temp1 = (seed & 0xFFFF) << 0x10;
seed = (seed * 125 + 3) % 0x2AAAAB;
temp2 = (seed & 0xFFFF);
cryptTable[index2] = ( temp1 | temp2 );
}
}
}
函数二、以下函数计算lpszFileName 字符串的hash值,其中dwHashType 为hash的类型,在下面的函数三、GetHashTablePos函数中调用此函数二,其可以取的值为0、1、2;该函数返回lpszFileName 字符串的hash值:
unsigned long HashString( char *lpszFileName, unsigned long dwHashType )
{
unsigned char *key = (unsigned char *)lpszFileName;
unsigned long seed1 = 0x7FED7FED;
unsigned long seed2 = 0xEEEEEEEE;
int ch;
while( *key != 0 )
{
ch = toupper(*key++);
seed1 = cryptTable[(dwHashType << 8) + ch] ^ (seed1 + seed2);
seed2 = ch + seed1 + seed2 + (seed2 << 5) + 3;
}
return seed1;
}
Blizzard的这个算法是非常高效的,被称为"One-Way Hash"( A one-way hash is a an algorithm that is constructed in such a way that deriving the original string (set of strings, actually) is virtually impossible)。举个例子,字符串"unitneutralacritter.grp"通过这个算法得到的结果是0xA26067F3。
是不是把第一个算法改进一下,改成逐个比较字符串的Hash值就可以了呢,答案是,远远不够,要想得到最快的算法,就不能进行逐个的比较,通常是构造一个哈希表(Hash Table)来解决问题,哈希表是一个大数组,这个数组的容量根据程序的要求来定义,例如1024,每一个Hash值通过取模运算 (mod) 对应到数组中的一个位置,这样,只要比较这个字符串的哈希值对应的位置有没有被占用,就可以得到最后的结果了,想想这是什么速度?是的,是最快的O(1),现在仔细看看这个算法吧:
typedef struct
{
int nHashA;
int nHashB;
char bExists;
......
} SOMESTRUCTRUE;
一种可能的结构体定义?
函数三、下述函数为在Hash表中查找是否存在目标字符串,有则返回要查找字符串的Hash值,无则,return -1.
int GetHashTablePos( har *lpszString, SOMESTRUCTURE *lpTable )
//lpszString要在Hash表中查找的字符串,lpTable为存储字符串Hash值的Hash表。
{
int nHash = HashString(lpszString); //调用上述函数二,返回要查找字符串lpszString的Hash值。
int nHashPos = nHash % nTableSize;
if ( lpTable[nHashPos].bExists && !strcmp( lpTable[nHashPos].pString, lpszString ) )
{ //如果找到的Hash值在表中存在,且要查找的字符串与表中对应位置的字符串相同,
return nHashPos; //则返回上述调用函数二后,找到的Hash值
}
else
{
return -1;
}
}
看到此,我想大家都在想一个很严重的问题:“如果两个字符串在哈希表中对应的位置相同怎么办?”,毕竟一个数组容量是有限的,这种可能性很大。解决该问题的方法很多,我首先想到的就是用“链表”,感谢大学里学的数据结构教会了这个百试百灵的法宝,我遇到的很多算法都可以转化成链表来解决,只要在哈希表的每个入口挂一个链表,保存所有对应的字符串就OK了。事情到此似乎有了完美的结局,如果是把问题独自交给我解决,此时我可能就要开始定义数据结构然后写代码了。
然而Blizzard的程序员使用的方法则是更精妙的方法。基本原理就是:他们在哈希表中不是用一个哈希值而是用三个哈希值来校验字符串。
MPQ使用文件名哈希表来跟踪内部的所有文件。但是这个表的格式与正常的哈希表有一些不同。首先,它没有使用哈希作为下标,把实际的文件名存储在表中用于验证,实际上它根本就没有存储文件名。而是使用了3种不同的哈希:一个用于哈希表的下标,两个用于验证。这两个验证哈希替代了实际文件名。
当然了,这样仍然会出现2个不同的文件名哈希到3个同样的哈希。但是这种情况发生的概率平均是:1:18889465931478580854784,这个概率对于任何人来说应该都是足够小的。现在再回到数据结构上,Blizzard使用的哈希表没有使用链表,而采用"顺延"的方式来解决问题,看看这个算法:
函数四、lpszString 为要在hash表中查找的字符串;lpTable 为存储字符串hash值的hash表;nTableSize 为hash表的长度:
int GetHashTablePos( char *lpszString, MPQHASHTABLE *lpTable, int nTableSize )
{
const int HASH_OFFSET = 0, HASH_A = 1, HASH_B = 2;
int nHash = HashString( lpszString, HASH_OFFSET );
int nHashA = HashString( lpszString, HASH_A );
int nHashB = HashString( lpszString, HASH_B );
int nHashStart = nHash % nTableSize;
int nHashPos = nHashStart;
while ( lpTable[nHashPos].bExists )
{
/*如果仅仅是判断在该表中时候存在这个字符串,就比较这两个hash值就可以了,不用对
*结构体中的字符串进行比较。这样会加快运行的速度?减少hash表占用的空间?这种
*方法一般应用在什么场合?*/
if ( lpTable[nHashPos].nHashA == nHashA
&& lpTable[nHashPos].nHashB == nHashB )
{
return nHashPos;
}
else
{
nHashPos = (nHashPos + 1) % nTableSize;
}
if (nHashPos == nHashStart)
break;
}
return -1;
}
上述程序解释:
1.计算出字符串的三个哈希值(一个用来确定位置,另外两个用来校验)
2. 察看哈希表中的这个位置
3. 哈希表中这个位置为空吗?如果为空,则肯定该字符串不存在,返回-1。
4. 如果存在,则检查其他两个哈希值是否也匹配,如果匹配,则表示找到了该字符串,返回其Hash值。
5. 移到下一个位置,如果已经移到了表的末尾,则反绕到表的开始位置起继续查询
6. 看看是不是又回到了原来的位置,如果是,则返回没找到
7. 回到3
ok,这就是本文中所说的最快的Hash表算法。什么?不够快?:D。欢迎,各位批评指正。
--------------------------------------------
补充1、一个简单的hash函数:
/*key为一个字符串,nTableLength为哈希表的长度
*该函数得到的hash值分布比较均匀*/
unsigned long getHashIndex( const char *key, int nTableLength )
{
unsigned long nHash = 0;
while (*key)
{
nHash = (nHash<<5) + nHash + *key++;
}
return ( nHash % nTableLength );
}
补充2、一个完整测试程序:
哈希表的数组是定长的,如果太大,则浪费,如果太小,体现不出效率。合适的数组大小是哈希表的性能的关键。哈希表的尺寸最好是一个质数。当然,根据不同的数据量,会有不同的哈希表的大小。对于数据量时多时少的应用,最好的设计是使用动态可变尺寸的哈希表,那么如果你发现哈希表尺寸太小了,比如其中的元素是哈希表尺寸的2倍时,我们就需要扩大哈希表尺寸,一般是扩大一倍。
下面是哈希表尺寸大小的可能取值:
17, 37, 79, 163, 331,
673, 1361, 2729, 5471, 10949,
21911, 43853, 87719, 175447, 350899,
701819, 1403641, 2807303, 5614657, 11229331,
22458671, 44917381, 89834777, 179669557, 359339171,
718678369, 1437356741, 2147483647
以下为该程序的完整源码,已在linux下测试通过:
#include <ctype.h> //多谢citylove指正。
//crytTable[]里面保存的是HashString函数里面将会用到的一些数据,在prepareCryptTable
//函数里面初始化
unsigned long cryptTable[0x500];
void prepareCryptTable()
{
unsigned long seed = 0x00100001, index1 = 0, index2 = 0, i;
{
for( index2 = index1, i = 0; i < 5; i++, index2 += 0x100 )
{
unsigned long temp1, temp2;
temp1 = (seed & 0xFFFF) << 0x10;
temp2 = (seed & 0xFFFF);
}
}
}
//在下面GetHashTablePos函数里面调用本函数,其可以取的值为0、1、2;该函数
//返回lpszFileName 字符串的hash值;
unsigned long HashString( char *lpszFileName, unsigned long dwHashType )
{
unsigned char *key = (unsigned char *)lpszFileName;
unsigned long seed1 = 0x7FED7FED;
unsigned long seed2 = 0xEEEEEEEE;
int ch;
{
ch = toupper(*key++);
seed2 = ch + seed1 + seed2 + (seed2 << 5) + 3;
}
return seed1;
}
//./hash "arr/units.dat"
//./hash "unit/neutral/acritter.grp"
int main( int argc, char **argv )
{
unsigned long ulHashValue;
int i = 0;
{
printf("please input two arguments/n");
return -1;
}
prepareCryptTable();
for ( ; i < 0x500; i++ )
{
if ( i % 10 == 0 )
{
printf("/n");
}
}
printf("/n----%X ----/n", ulHashValue );
printf("----%X ----/n", ulHashValue );
printf("----%X ----/n", ulHashValue );
}
出处:http://blog.csdn.net/v_JULY_v。
最快的Hash表算法的更多相关文章
- Hash表算法
出处:http://blog.csdn.net/v_JULY_v 第一部分:Top K 算法详解问题描述百度面试题: 搜索引擎会通过日志文件把用户每次检索使用的所有检索串都记录下来,每个查询串的 ...
- 十一、从头到尾彻底解析Hash 表算法
在研究MonetDB时深入的学习了hash算法,看了作者的文章很有感触,所以转发,希望能够使更多人受益! 十一.从头到尾彻底解析Hash 表算法 作者:July.wuliming.pkuoliver ...
- 从头到尾彻底解析Hash表算法
作者:July.wuliming.pkuoliver 说明:本文分为三部分内容, 第一部分为一道百度面试题Top K算法的详解:第二部分为关于Hash表算法的详细阐述:第三部分为打造一个最快的Hash ...
- 从头到尾解析Hash表算法
via:点击打开链接 十一.从头到尾解析Hash 表算法 作者:July.wuliming.pkuoliver 出处:http://blog.csdn.net/v_JULY_v. 说明:本文分 ...
- 从头到尾彻底解析Hash 表算法
作者:July.wuliming.pkuoliver 出处:http://blog.csdn.net/v_JULY_v. 说明:本文分为三部分内容, 第一部分为一道百度面试题Top K算法的 ...
- 转 从头到尾彻底解析Hash表算法
出处:http://blog.csdn.net/v_JULY_v. 说明:本文分为三部分内容, 第一部分为一道百度面试题Top K算法的详解:第二部分为关于Hash表算法的详细阐述:第三部 ...
- (面试)Hash表算法十道海量数据处理面试题
Hash表算法处理海量数据处理面试题 主要针对遇到的海量数据处理问题进行分析,参考互联网上的面试题及相关处理方法,归纳为三种问题 (1)数据量大,内存小情况处理方式(分而治之+Hash映射) (2)判 ...
- Hash表算法详解
Hash表定义 散列表(Hash table,也叫哈希表),是根据关键字值(Key value)直接进行访问的数据结构.也就是说,它通过把关键字(关键字通过Hash算法生成)映射到表中一个位置来访问记 ...
- Hash表 算法的详细解析
http://xingyunbaijunwei.blog.163.com/blog/static/76538067201111494524190/ 什么是HashHash,一般翻译做“散列”,也有直接 ...
随机推荐
- SQL里的concat() 以及group_concat() 函数的使用
实例参考:https://blog.csdn.net/mary19920410/article/details/76545053 一 concat()函数 1.功能:将多个字符串连接成一个字符串. 2 ...
- 揭开redux,react-redux的神秘面纱
16年开始使用react-redux,迄今也已两年多.这时候再来阅读和读懂redux/react-redux源码,虽已没有当初的新鲜感,但依然觉得略有收获.把要点简单写下来,一方面供感兴趣的读者参考, ...
- aes 加密,解密
Javaaes加密: package com.sh.auth.util; import java.security.InvalidKeyException; import java.security. ...
- 第13届景驰-埃森哲杯广东工业大学ACM程序设计大赛--E-回旋星空
链接:https://www.nowcoder.com/acm/contest/90/E 来源:牛客网 1.题目描述 曾经有两个来自吉尔尼斯的人(A和C)恋爱了,他们晚上经常在一起看头上的那片名为假的 ...
- 牛客小白月赛2 I 艺 【归并思想】【离散化】
链接:https://www.nowcoder.com/acm/contest/86/I来源:牛客网 题目描述 接下去,Sεlιнα(Selina) 又搞了个文艺竞演. 虽说是文艺竞演,其实只是为了满 ...
- SI - 系统 - 操作系统简述 (Operating System)
Unix 操作系统:System V.BSD Microsoft Windows Apple Mac OS Linux FreeBSD 安装 https://jingyan.baidu.com/art ...
- 富文本编辑器 wangEditor.js
1.引用 wangEditor 相关js 和 css 下载地址:https://files.cnblogs.com/files/kitty-blog/WangEditor.zip 3.页面: < ...
- C# 用HttpWebRequest模拟一个虚假的IP伪造ip
有人会说:IP验证是在TCP层完成的,不是HTTP层完成的,如果伪造IP的话可能连TCP的三次握手都完不成.我这里说的不是完全意义的伪造.如果你使用透明代理上网,那么在透明代理发送给服务器端的HTTP ...
- Mysql 查看连接数,状态,最大并发数
MySQL: ERROR 1040: Too many connections”的异常情况,造成这种情况的一种原因是访问量过高,MySQL服务器抗不住,这个时候就要考虑增加从服务器分散读压力:另一种原 ...
- 阿里云异常网络连接-可疑WebShell通信行为的分析解决办法
2018年10月27日接到新客户网站服务器被上传了webshell脚本木马后门问题的求助,对此我们sine安全公司针对此阿里云提示的安全问题进行了详细分析,ECS服务器被阿里云提示异常网络连接-可疑W ...