Counting Divisors HDU - 6069
设n=p_1^{c_1}p_2^{c_2}...p_m^{c_m}n=p1c1p2c2...pmcm,则d(n^k)=(kc_1+1)(kc_2+1)...(kc_m+1)d(nk)=(kc1+1)(kc2+1)...(kcm+1)。
枚举不超过\sqrt{r}√r的所有质数pp,再枚举区间[l,r][l,r]中所有pp的倍数,将其分解质因数,最后剩下的部分就是超过\sqrt{r}√r的质数,只可能是00个或11个。
时间复杂度O(\sqrt{r}+(r-l+1)\log\log(r-l+1))O(√r+(r−l+1)loglog(r−l+1))。
这道题的出题者给我膜一会,666666
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=1000010,P=998244353;
int Case,i,j,k,p[N/10],tot,g[N],ans;ll n,l,r,f[N];
bool v[N];
void work(ll p)
{
for(ll i=l/p*p;i<=r;i+=p)if(i>=l)
{
int o=0;
while(f[i-l]%p==0)f[i-l]/=p,o++;
g[i-l]=1LL*g[i-l]*(o*k+1)%P;
}
}
int main()
{
//freopen("input.txt","r",stdin);
//freopen("output.txt","w",stdout);
for(i=2;i<N;i++)
{
if(!v[i]) p[tot++]=i;
for(j=0;j<tot && i*p[j]<N;j++)
{
v[i*p[j]]=1;
if(i%p[j]==0) break;
}
}
scanf("%d",&Case);
while(Case--)
{
scanf("%lld%lld%d",&l,&r,&k);
n=r-l;
for(i=0;i<=n;i++) f[i]=i+l,g[i]=1;
for(i=0;i<tot;i++)
{
if(1LL*p[i]*p[i]>r)break;
work(p[i]);
}
for(ans=i=0;i<=n;i++)
{
if(f[i]>1)g[i]=1LL*g[i]*(k+1)%P;
ans=(ans+g[i])%P;
}
printf("%d\n",ans);
}
return 0;
}
Counting Divisors HDU - 6069的更多相关文章
- HDU 6069 Counting Divisors
Counting Divisors Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 524288/524288 K (Java/Oth ...
- hdu 6069 Counting Divisors(求因子的个数)
Counting Divisors Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 524288/524288 K (Java/Oth ...
- hdu 6069 Counting Divisors 筛法
Counting Divisors Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 524288/524288 K (Java/Oth ...
- HDU 6069 Counting Divisors —— 2017 Multi-University Training 4
Counting Divisors Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 524288/524288 K (Java/Oth ...
- 2017 Multi-University Training Contest - Team 4 hdu6069 Counting Divisors
地址:http://acm.split.hdu.edu.cn/showproblem.php?pid=6069 题目: Counting Divisors Time Limit: 10000/5000 ...
- hdu6069 Counting Divisors 晒区间素数
/** 题目:hdu6069 Counting Divisors 链接:http://acm.hdu.edu.cn/showproblem.php?pid=6069 题意:求[l,r]内所有数的k次方 ...
- HDU 6069
Counting Divisors Problem Description In mathematics, the function d(n) denotes the number of diviso ...
- DIVCNT2&&3 - Counting Divisors
DIVCNT2 - Counting Divisors (square) DIVCNT3 - Counting Divisors (cube) 杜教筛 [学习笔记]杜教筛 (其实不算是杜教筛,类似杜教 ...
- SPOJ 20713 DIVCNT2 - Counting Divisors (square)
DIVCNT2 - Counting Divisors (square) #sub-linear #dirichlet-generating-function Let \sigma_0(n)σ0 ...
随机推荐
- golang hello
package main import "fmt" func main() { fmt.Printf("Hello, world.\n") }
- Ubuntu16.04 ARM平台移植libcurl curl-7.63.0
libcurl是免费的轻量级的客户端网络库,支持DICT, FILE, FTP, FTPS, Gopher, HTTP, HTTPS, IMAP, IMAPS, LDAP, LDAPS,POP3, P ...
- java类中final方法的作用
不给子类复写这个方法.说明你已经知道这个方法提供的功能已经满足你要求,不需要进行扩展,并且也不允许任何从此类继承的类来覆写这个方法,但是继承仍然可以继承这个方法,也就是说可以直接使用 inline扩展 ...
- Apache fcgistarter命令
一.简介 fcgistarter命令用于启动FastCGI程序. 二.语法 fcgistarter -c command -p port [ -i interface ] -N num 参考:http ...
- 第十八课 Gazebo仿真器
1.Gazebo概述 在Gazebo中的模拟效果是非常好的. 它的特性 Dynamics Simulation 直接控制物理引擎参数 Building Editor 无需代码即可在Gazebo中创建机 ...
- 面试题:测试给定的list,使用for,foreach,iterator删除元素的不同表现
上代码: 1. 使用增强for循环(foreach) package com.xxx; import java.util.ArrayList; import java.util.List; /** * ...
- 学习如何用VS2010创建ocx控件
1参考文章 (1)这一篇将使用vc创建ocx控件:http://blog.csdn.net/jiadelin/article/details/2917225 (2)这一篇文章有关vs2010创建act ...
- MongoDB整理笔记の管理Replica Sets
一.读写分离 从库能进行查询,这样可以分担主库的大量的查询请求. 1.先向主库中插入一条测试数据 [root@localhost bin]# ./mongo --port 28010 MongoD ...
- 初学python - 零碎的知识点
* 标识符命名规则 数字,字母,下划线组成,数字不能开头区分大小写 * 注释 单行:#:多行:‘ ‘ ‘ ,“”“: * 进制标识 b:二进制 o:八进制 d:十进制x:十六进制 转换:format( ...
- hadoop中常用的hdfs代码操作
一:向HDFS中上传任意文本文件,如果指定的文件在HDFS中已经存在,由用户指定是追加到原有文件末尾还是覆盖原有的文件: package hadoopTest; import org.apache.h ...