BZOJ - 2818 莫比乌斯反演 初步
要使用分块的技巧
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<string>
#include<vector>
#include<stack>
#include<queue>
#include<set>
#include<map>
#define rep(i,j,k) for(register int i=j;i<=k;i++)
#define rrep(i,j,k) for(register int i=j;i>=k;i--)
#define erep(i,u) for(register int i=head[u];~i;i=nxt[i])
#define iin(a) scanf("%d",&a)
#define lin(a) scanf("%lld",&a)
#define din(a) scanf("%lf",&a)
#define s0(a) scanf("%s",a)
#define s1(a) scanf("%s",a+1)
#define print(a) printf("%lld",(ll)a)
#define enter putchar('\n')
#define blank putchar(' ')
#define println(a) printf("%lld\n",(ll)a)
#define IOS ios::sync_with_stdio(0)
using namespace std;
const int maxn = 1e7+11;
const double eps = 1e-7;
typedef long long ll;
const int oo = 0x3f3f3f3f;
ll read(){
ll x=0,f=1;register char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
int prime[maxn],mu[maxn],tot;
bool vis[maxn],isprime[maxn];
ll sum[maxn];
void get(int n){
mu[1]=1;
rep(i,2,n){
if(!vis[i])prime[++tot]=i,mu[i]=-1;
rep(j,1,tot){
if(i*prime[j]>maxn)break;
vis[i*prime[j]]=1;
if(i%prime[j]==0){
mu[i*prime[j]]=0;
break;
}else{
mu[i*prime[j]]=-mu[i];
}
}
}
rep(i,1,n){
sum[i]=sum[i-1]+mu[i];
}
}
ll cal(int n){
ll ans=0;int pos=0;
for(int i=1;i<=n;i=pos+1){
pos=n/(n/i);
ans+=(sum[pos]-sum[i-1])*(n/i)*(n/i);
}
return ans;
}
int main(){
int n;
get(maxn-1);
while(~iin(n)){
int tmp=1;
ll ans=0;
while(prime[tmp]<=n&&tmp<=tot){
ans+=cal(n/prime[tmp]);
tmp++;
}
println(ans);
}
return 0;
}
BZOJ - 2818 莫比乌斯反演 初步的更多相关文章
- 【题解】Crash的数字表格 BZOJ 2154 莫比乌斯反演
题目传送门 http://www.lydsy.com/JudgeOnline/problem.php?id=2154 人生中第一道自己做出来的莫比乌斯反演 人生中第一篇用LaTeX写数学公式的博客 大 ...
- BZOJ 3309 莫比乌斯反演
题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=3309 题意:定义f(n)为n所含质因子的最大幂指数,求 $Ans=\sum _{i=1} ...
- BZOJ 2301 莫比乌斯反演入门
2301: [HAOI2011]Problem b Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函 ...
- bzoj 2154 莫比乌斯反演求lcm的和
题目大意: 表格中每一个位置(i,j)填的值是lcm(i,j) , 求n*m的表格值有多大 论文贾志鹏线性筛中过程讲的很好 最后的逆元我利用的是欧拉定理求解的 我这个最后线性扫了一遍,勉强过了,效率不 ...
- bzoj 2301 莫比乌斯反演
对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 这里题目意思很明显 对于要求的f[n] = sig ...
- bzoj 1101 莫比乌斯反演
最裸的莫比乌斯 #include<bits/stdc++.h> #define LL long long #define fi first #define se second #defin ...
- bzoj 2820 莫比乌斯反演
搞了一整个晚自习,只是看懂了dalao们的博客,目前感觉没有思路-.还是要多切题 next day: 刚才又推了一遍,发现顺过来了,hahaha #include<cstdio> #inc ...
- HYSBZ - 2818莫比乌斯反演
链接 题意很简洁不说了 题解:一开始我想直接暴力,复杂度是O(log(1e7)*sqrt(1e7))算出来是2e9,可能会复杂度爆炸,但是我看时限是10s,直接大力莽了一发暴力,没想到就过了= = 就 ...
- bzoj 2671 莫比乌斯反演
Calc Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 451 Solved: 234[Submit][Status][Discuss] Descr ...
随机推荐
- virsh 查看hypervisor特性
[root@opennebula var]# virsh -c qemu:///system nodeinfo CPU model: x86_64 CPU(s): CPU frequency: MHz ...
- shell chmod中数字与字母的含义
数字与字母的组合是chmod命令赋予文件,目录访问权限的方式 访问权限:可读,可写,可执行 字母表示:r , w , x 数字表示:4 , 2 , 1 , ...
- PostgreSQL的索引选型
PostgreSQL里面给全文检索或者模糊查询加索引提速的时候,一般会有两个选项,一个是GIST类型,一个是GIN类型,官网给出的参考如下: There are substantial perform ...
- Solidity transfer vs send 区别
原文地址: https://ethereum.stackexchange.com/questions/19341/address-send-vs-address-transfer-best-pract ...
- java方法学习记录
---恢复内容开始--- 方法重载:两个方法有相同的名字,但参数不同,就是方法重载,且不能仅仅依据修饰符或者返回类型的不同来重载方法. 命令行参数的使用 有时候你希望运行一个程序时候再传递给它消息.这 ...
- 单元测试NUnit 的文章
请参考 https://www.cnblogs.com/ranh941/p/7629279.htmlhttps://blog.csdn.net/qincode/article/details/1831 ...
- python23种设计模式
第一篇 Python与设计模式:前言 第二篇(23种设计模式) 创建类设计模式(5种) 单例模式.工厂模式.简单工厂模式.抽象工厂模式.建造者模式.原型模式 结构类设计模式(7种) 代理模式.装饰 ...
- Java 线程的通讯--生产者和消费者
package 生产者和消费者; //消费者 public class Customer implements Runnable { private Share_resources rescource ...
- (一)springmvc+spring+mybatis+maven框架搭建
(一)springmvc+spring+mybatis+maven框架搭建 1.说明 工作之余,为了学习点东西.先搭建个框架. 以后要往里面加东西,比如rabbitMQ.redis.shiro等. 也 ...
- 二、搭建SpringBoot项目
与其说是搭建,还不如说去下载...(注意,在此之前要确保你的3000块钱的笔记本上安装了JDK8+已经最新的相对较新的maven:apache-maven-3.6.0,至于JDK以及maven的相关安 ...