要使用分块的技巧

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<string>
#include<vector>
#include<stack>
#include<queue>
#include<set>
#include<map>
#define rep(i,j,k) for(register int i=j;i<=k;i++)
#define rrep(i,j,k) for(register int i=j;i>=k;i--)
#define erep(i,u) for(register int i=head[u];~i;i=nxt[i])
#define iin(a) scanf("%d",&a)
#define lin(a) scanf("%lld",&a)
#define din(a) scanf("%lf",&a)
#define s0(a) scanf("%s",a)
#define s1(a) scanf("%s",a+1)
#define print(a) printf("%lld",(ll)a)
#define enter putchar('\n')
#define blank putchar(' ')
#define println(a) printf("%lld\n",(ll)a)
#define IOS ios::sync_with_stdio(0)
using namespace std;
const int maxn = 1e7+11;
const double eps = 1e-7;
typedef long long ll;
const int oo = 0x3f3f3f3f;
ll read(){
ll x=0,f=1;register char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
int prime[maxn],mu[maxn],tot;
bool vis[maxn],isprime[maxn];
ll sum[maxn];
void get(int n){
mu[1]=1;
rep(i,2,n){
if(!vis[i])prime[++tot]=i,mu[i]=-1;
rep(j,1,tot){
if(i*prime[j]>maxn)break;
vis[i*prime[j]]=1;
if(i%prime[j]==0){
mu[i*prime[j]]=0;
break;
}else{
mu[i*prime[j]]=-mu[i];
}
}
}
rep(i,1,n){
sum[i]=sum[i-1]+mu[i];
}
}
ll cal(int n){
ll ans=0;int pos=0;
for(int i=1;i<=n;i=pos+1){
pos=n/(n/i);
ans+=(sum[pos]-sum[i-1])*(n/i)*(n/i);
}
return ans;
}
int main(){
int n;
get(maxn-1);
while(~iin(n)){
int tmp=1;
ll ans=0;
while(prime[tmp]<=n&&tmp<=tot){
ans+=cal(n/prime[tmp]);
tmp++;
}
println(ans);
}
return 0;
}

BZOJ - 2818 莫比乌斯反演 初步的更多相关文章

  1. 【题解】Crash的数字表格 BZOJ 2154 莫比乌斯反演

    题目传送门 http://www.lydsy.com/JudgeOnline/problem.php?id=2154 人生中第一道自己做出来的莫比乌斯反演 人生中第一篇用LaTeX写数学公式的博客 大 ...

  2. BZOJ 3309 莫比乌斯反演

    题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=3309 题意:定义f(n)为n所含质因子的最大幂指数,求 $Ans=\sum _{i=1} ...

  3. BZOJ 2301 莫比乌斯反演入门

    2301: [HAOI2011]Problem b Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函 ...

  4. bzoj 2154 莫比乌斯反演求lcm的和

    题目大意: 表格中每一个位置(i,j)填的值是lcm(i,j) , 求n*m的表格值有多大 论文贾志鹏线性筛中过程讲的很好 最后的逆元我利用的是欧拉定理求解的 我这个最后线性扫了一遍,勉强过了,效率不 ...

  5. bzoj 2301 莫比乌斯反演

    对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 这里题目意思很明显 对于要求的f[n] = sig ...

  6. bzoj 1101 莫比乌斯反演

    最裸的莫比乌斯 #include<bits/stdc++.h> #define LL long long #define fi first #define se second #defin ...

  7. bzoj 2820 莫比乌斯反演

    搞了一整个晚自习,只是看懂了dalao们的博客,目前感觉没有思路-.还是要多切题 next day: 刚才又推了一遍,发现顺过来了,hahaha #include<cstdio> #inc ...

  8. HYSBZ - 2818莫比乌斯反演

    链接 题意很简洁不说了 题解:一开始我想直接暴力,复杂度是O(log(1e7)*sqrt(1e7))算出来是2e9,可能会复杂度爆炸,但是我看时限是10s,直接大力莽了一发暴力,没想到就过了= = 就 ...

  9. bzoj 2671 莫比乌斯反演

    Calc Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 451  Solved: 234[Submit][Status][Discuss] Descr ...

随机推荐

  1. 新建tomcat的server服务,在左侧项目浏览处,右键空白的地方,选择new,再选择other选项

    新建tomcat的server服务,在左侧项目浏览处,右键空白的地方,选择new,再选择other选项. 在弹出的窗口中,下拉滚动条找到Server,并单击next按钮. 在弹出的窗口中,找到第一个A ...

  2. 30-懒省事的小明(priority_queue)

    http://acm.nyist.edu.cn/JudgeOnline/problem.php?pid=55 懒省事的小明 时间限制:3000 ms  |  内存限制:65535 KB 难度:3   ...

  3. ROS indigo 删除和安装

    删除比较容易:  sudo apt-get remove ros-jade-desktop-full 但是如果怕删不干净可以采用: sudo apt-get remove ros-*  ,但是不确定会 ...

  4. 用TCGA数据库分析癌症和癌旁组织的表达差异

    上周收到一条求助信息:“如何用TCGA数据库分析LINC00152在卵巢癌与正常组织的的表达差异?” 所以以这个题目为记录分析过程如下: 一.下载数据 a)进入网站https://cancergeno ...

  5. sql 存储过程返回多个值

    ALTER PROCEDURE your_sp_name    ASBEGIN    DECLARE @a INT, @b INT, @c INT    SELECT @a= COUNT(1) FRO ...

  6. CentOS7下源码包方式安装rabbitmq

    1.先安装erlang http://www.cnblogs.com/justphp/p/6093880.html 2.下载rabbitmq rpm包: wget http://www.rabbitm ...

  7. HTTP文件上传插件开发文档-JSP

    版权所有 2009-2016 荆门泽优软件有限公司 保留所有权利 官方网站:http://www.ncmem.com/ 产品首页:http://www.ncmem.com/webplug/http-u ...

  8. c# 半角转换为全角 判断是否是全角

    #region 半角转换为全角 /// <summary> /// 半角转换为全角 ////转全角的函数(SBC case) ///任意字符串 ///全角空格为12288,半角空格为32 ...

  9. 异步串行通信的XON与XOFF

    在单片机的异步串行通信中,putchar函数中的实现中反复用到了XON和XOFF,定义原型如下: #define XON 0x11#define XOFF 0x13 查找ASCII码表,这两个对应的是 ...

  10. 【转】快速开发移动医疗App!开源框架mHealthDroid

    原文地址:http://www.csdn.net/article/2014-12-12/2823096-mHealhDroid mHealthDroid是一款开源的移动框架,主要用于帮助开发者快速而又 ...