Strategic Game

Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 10153    Accepted Submission(s): 4744

题目链接http://acm.hdu.edu.cn/showproblem.php?pid=1054

Description:

Bob enjoys playing computer games, especially strategic games, but sometimes he cannot find the solution fast enough and then he is very sad. Now he has the following problem. He must defend a medieval city, the roads of which form a tree. He has to put the minimum number of soldiers on the nodes so that they can observe all the edges. Can you help him?

Your program should find the minimum number of soldiers that Bob has to put for a given tree.

The input file contains several data sets in text format. Each data set represents a tree with the following description:

the number of nodes
the description of each node in the following format
node_identifier:(number_of_roads) node_identifier1 node_identifier2 ... node_identifier
or
node_identifier:(0)

The node identifiers are integer numbers between 0 and n-1, for n nodes (0 < n <= 1500). Every edge appears only once in the input data.

For example for the tree:

the solution is one soldier ( at the node 1).

The output should be printed on the standard output. For each given input data set, print one integer number in a single line that gives the result (the minimum number of soldiers). An example is given in the following table:

Sample Input:

4
0:(1) 1
1:(2) 2 3
2:(0)
3:(0)
5
3:(3) 1 4 2
1:(1) 0
2:(0)
0:(0)
4:(0)

Sample Output:

1
2

题意:

问在图中最少放置多少个士兵,可以看守所有的边。

题解:

最小点覆盖模板。

但由于数据量较大,边数较多,邻接矩阵要超时,我便改用vector存储。

代码如下:

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <vector>
#define mem(x,y) memset(x,y,sizeof(x))
using namespace std; const int N = ;
int check[N],match[N];
int n,ans,dfn;
vector<int> link[N]; inline int dfs(int x){
for(int i=;i<link[x].size();i++){
int now = link[x][i];
if(check[now]!=dfn){
check[now]=dfn;
if(match[now]==- || dfs(match[now])){
match[now]=x;
return ;
}
}
}
return ;
} int main(){
while(scanf("%d",&n)!=EOF){
for(int i=;i<n;i++) link[i].clear();
mem(link,);mem(match,-);ans=dfn=;
for(int i=,u,k;i<n;i++){
scanf("%d:(%d)",&u,&k);
for(int j=,v;j<=k;j++){
scanf("%d",&v);
link[u].push_back(v);
link[v].push_back(u);
}
}
for(int i=;i<n;i++){
dfn++;
if(dfs(i)) ans++;
}
printf("%d\n",ans/);
}
return ;
}

HDU1054 Strategic Game(最小点覆盖)的更多相关文章

  1. HDU1054 Strategic Game —— 最小点覆盖 or 树形DP

    题目链接:https://vjudge.net/problem/HDU-1054 Strategic Game Time Limit: 20000/10000 MS (Java/Others)     ...

  2. POJ1463 Strategic game (最小点覆盖 or 树dp)

    题目链接:http://poj.org/problem?id=1463 给你一棵树形图,问最少多少个点覆盖所有的边. 可以用树形dp做,任选一点,自底向上回溯更新. dp[i][0] 表示不选i点 覆 ...

  3. HDU 1054 Strategic Game 最小点覆盖

     最小点覆盖概念:选取最小的点数覆盖二分图中的所有边. 最小点覆盖 = 最大匹配数. 证明:首先假设我们求的最大匹配数为m,那么最小点覆盖必然 >= m,因为仅仅是这m条边就至少需要m个点.然后 ...

  4. HDU 1054 Strategic Game (最小点覆盖)【二分图匹配】

    <题目链接> 题目大意:鲍勃喜欢玩电脑游戏,特别是战略游戏,但有时他无法找到解决方案,速度不够快,那么他很伤心.现在,他有以下的问题.他必须捍卫一个中世纪的城市,形成了树的道路.他把战士的 ...

  5. HDU 1054 Strategic Game(最小点覆盖+树形dp)

    题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=106048#problem/B 题意:给出一些点相连,找出最小的点数覆盖所有的 ...

  6. Strategic game POJ - 1463 【最小点覆盖集】

    Bob enjoys playing computer games, especially strategic games, but sometimes he cannot find the solu ...

  7. LA 2038 Strategic game(最小点覆盖,树形dp,二分匹配)

    题意即求一个最小顶点覆盖. 对于没有孤立点的图G=(V,E),最大独立集+最小顶点覆盖= V.(往最大独立集加点) 问题可以变成求树上的最大独立集合. 每个结点的选择和其父节点选不选有关, dp(u, ...

  8. 最小点覆盖 hdu--1054

    点击打开题目链接 最小点覆盖=最大二分匹配的 (单向图) ; 最小点覆盖=最大二分匹配的一半 (双向图) ; 证明 所以我们只需求最大匹配,用 匈牙利算法 求出最大匹配,除以二得到答案 具体算法都已经 ...

  9. HDU - 1054 Strategic Game(二分图最小点覆盖/树形dp)

    d.一颗树,选最少的点覆盖所有边 s. 1.可以转成二分图的最小点覆盖来做.不过转换后要把匹配数除以2,这个待细看. 2.也可以用树形dp c.匈牙利算法(邻接表,用vector实现): /* 用ST ...

随机推荐

  1. c/c++ 结构体传参问题

    c/c++的结构体传参可以有三种方式: 1.传递结构体变量,值传递 2.传递结构体指针,地址传递 3.传递结构体成员,可是值传递也可以是地址传递 根据代码示例: 1.传递结构体变量 #include& ...

  2. 安装cloudera manager使用mysql作为元数据库

    1.首次安装好mysql数据库后,会生成一个随机密码,使用如下办法找到: cat /var/log/mysqld.log |grep password 2.首次安装好mysql数据库后,第一次登陆进去 ...

  3. android 怎么判断activity 从哪里启动的

    有时候,你想要知道,有一个activity 从哪里启动的.怎么才能知道呢? 1.前提是,androidstadio 你下载了源码.找到你的activityBase的实现类,在startActivity ...

  4. Java RMI 入门指南

    开通博客也有好些天了,一直没有时间静下心来写博文,今天我就把两年前整理的一篇关于JAVA RMI入门级文章贴出来,供有这方面需要的同学们参考学习. RMI 相关知识 RMI全称是Remote Meth ...

  5. Linux - 信息收集

    1. #!,代表加载器(解释器)的路径,如: #!/bin/bash echo "Hello Boy!" 上面的意思是说,把下面的字符(#!/bin/bash以下的所有字符)统统传 ...

  6. goroutine 并发之搜索文件内容

    golang并发编程 - 例子解析 February 26, 2013 最近在看<Programming in Go>, 其中关于并发编程写得很不错, 受益非浅, 其中有一些例子是需要多思 ...

  7. Fiddler安卓抓包详细教程

    电脑端抓包一般图方便就用浏览器自带的,最近需要分析安卓一个APP的HTTP请求,尝试了wireshark(功能太强大了,然而我并不会用),tcpdump(用起来还是比较麻烦),网上搜了一下,还是使用F ...

  8. 「暑期训练」「基础DP」FATE(HDU-2159)

    题意与分析 学习本题的时候遇到了一定的困难.看了题解才知道这是二重背包.本题的实质是二重完全背包.二维费用的背包问题是指:对于每件物品,具有两种不同的费用,选择这件物品必须同时付出这两种代价:对于每种 ...

  9. jmeter4.0☞如何汉化(二)

    如何汉化jmeter打开jmeter,选择options_choose language_Chinese(simplified),如下图: 刚刚下载使用jmeter4.0的时候有点懵圈,英语实在是差劲 ...

  10. LeetCode 410——分割数组的最大值

    1. 题目 2. 解答 此题目为 今日头条 2018 AI Camp 5 月 26 日在线笔试编程题第二道--最小分割分数. class Solution { public: // 若分割数组的最大值 ...